2021-12-14 09:57:38 +01:00

492 lines
16 KiB
C
Raw Blame History

/**
******************************************************************************
* @file I2C/I2C_TwoBoards_ComIT/Src/main.c
* @author MCD Application Team
* @brief This sample code shows how to use STM32F7xx I2C HAL API to transmit
* and receive a data buffer with a communication process based on
* IT transfer.
* The communication is done using 2 Boards.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F7xx_HAL_Examples
* @{
*/
/** @addtogroup I2C_TwoBoards_ComIT
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Uncomment this line to use the board as master, if not it is used as slave */
#define MASTER_BOARD
#define I2C_ADDRESS 0x30F
/* I2C TIMING Register define when I2C clock source is SYSCLK */
/* I2C TIMING is calculated in case of the I2C Clock source is the SYSCLK = 72 MHz */
/* This example use TIMING to 0x00C4092A to reach 1 MHz speed (Rise time = 26ns, Fall time = 2ns) */
#define I2C_TIMING 0x00C4092A
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* I2C handler declaration */
I2C_HandleTypeDef I2cHandle;
/* Buffer used for transmission */
uint8_t aTxBuffer[] = " ****I2C_TwoBoards communication based on IT**** ****I2C_TwoBoards communication based on IT**** ****I2C_TwoBoards communication based on IT**** ";
/* Buffer used for reception */
uint8_t aRxBuffer[RXBUFFERSIZE];
/* Private function prototypes -----------------------------------------------*/
static void MPU_Config(void);
void SystemClock_Config(void);
static uint16_t Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength);
static void Error_Handler(void);
static void CPU_CACHE_Enable(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/* Configure the MPU attributes */
MPU_Config();
/* Enable the CPU Cache */
CPU_CACHE_Enable();
/* STM32F7xx HAL library initialization:
- Configure the Flash ART accelerator
- Systick timer is configured by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
- Set NVIC Group Priority to 4
- Low Level Initialization
*/
HAL_Init();
/* Configure the system clock to 216 MHz */
SystemClock_Config();
/* Configure LED6 and LED5 */
BSP_LED_Init(LED6);
BSP_LED_Init(LED5);
/*##-1- Configure the I2C peripheral ######################################*/
I2cHandle.Instance = I2Cx;
I2cHandle.Init.Timing = I2C_TIMING;
I2cHandle.Init.OwnAddress1 = I2C_ADDRESS;
I2cHandle.Init.AddressingMode = I2C_ADDRESSINGMODE_10BIT;
I2cHandle.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
I2cHandle.Init.OwnAddress2 = 0xFF;
I2cHandle.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
I2cHandle.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if(HAL_I2C_Init(&I2cHandle) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/* Enable the Analog I2C Filter */
HAL_I2CEx_ConfigAnalogFilter(&I2cHandle,I2C_ANALOGFILTER_ENABLE);
#ifdef MASTER_BOARD
/* Configure User/WakeUp push-button */
BSP_PB_Init(BUTTON_USER,BUTTON_MODE_GPIO);
/* Wait for User/WakeUp push-button press before starting the Communication */
while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_SET)
{
}
/* Delay to avoid that possible signal rebound is taken as button release */
HAL_Delay(50);
/* Wait for User/WakeUp push-button release before starting the Communication */
while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_RESET)
{
}
/* The board sends the message and expects to receive it back */
/*##-2- Start the transmission process #####################################*/
/* While the I2C in reception process, user can transmit data through
"aTxBuffer" buffer */
do
{
if(HAL_I2C_Master_Transmit_IT(&I2cHandle, (uint16_t)I2C_ADDRESS, (uint8_t*)aTxBuffer, TXBUFFERSIZE)!= HAL_OK)
{
/* Error_Handler() function is called when error occurs. */
Error_Handler();
}
/*##-3- Wait for the end of the transfer #################################*/
/* Before starting a new communication transfer, you need to check the current
state of the peripheral; if it<69>s busy you need to wait for the end of current
transfer before starting a new one.
For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
{
}
/* When Acknowledge failure occurs (Slave don't acknowledge it's address)
Master restarts communication */
}
while(HAL_I2C_GetError(&I2cHandle) == HAL_I2C_ERROR_AF);
/* Wait for User/WakeUp push-button press before starting the Communication */
while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_SET)
{
}
/* Delay to avoid that possible signal rebound is taken as button release */
HAL_Delay(50);
/* Wait for User/WakeUp push-button release before starting the Communication */
while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_RESET)
{
}
/*##-4- Put I2C peripheral in reception process ###########################*/
do
{
if(HAL_I2C_Master_Receive_IT(&I2cHandle, (uint16_t)I2C_ADDRESS, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK)
{
/* Error_Handler() function is called when error occurs. */
Error_Handler();
}
/*##-5- Wait for the end of the transfer #################################*/
/* Before starting a new communication transfer, you need to check the current
state of the peripheral; if it<69>s busy you need to wait for the end of current
transfer before starting a new one.
For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
{
}
/* When Acknowledge failure occurs (Slave don't acknowledge it's address)
Master restarts communication */
}
while(HAL_I2C_GetError(&I2cHandle) == HAL_I2C_ERROR_AF);
#else
/* The board receives the message and sends it back */
/*##-2- Put I2C peripheral in reception process ###########################*/
if(HAL_I2C_Slave_Receive_IT(&I2cHandle, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK)
{
/* Transfer error in reception process */
Error_Handler();
}
/*##-3- Wait for the end of the transfer ###################################*/
/* Before starting a new communication transfer, you need to check the current
state of the peripheral; if it<69>s busy you need to wait for the end of current
transfer before starting a new one.
For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
{
}
/*##-4- Start the transmission process #####################################*/
/* While the I2C in reception process, user can transmit data through
"aTxBuffer" buffer */
if(HAL_I2C_Slave_Transmit_IT(&I2cHandle, (uint8_t*)aTxBuffer, TXBUFFERSIZE)!= HAL_OK)
{
/* Transfer error in transmission process */
Error_Handler();
}
#endif /* MASTER_BOARD */
/*##-5- Wait for the end of the transfer ###################################*/
/* Before starting a new communication transfer, you need to check the current
state of the peripheral; if it<69>s busy you need to wait for the end of current
transfer before starting a new one.
For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
{
}
/*##-6- Compare the sent and received buffers ##############################*/
if(Buffercmp((uint8_t*)aTxBuffer,(uint8_t*)aRxBuffer,RXBUFFERSIZE))
{
/* Processing Error */
Error_Handler();
}
/* Infinite loop */
while (1)
{
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 216000000
* HCLK(Hz) = 216000000
* AHB Prescaler = 1
* APB1 Prescaler = 4
* APB2 Prescaler = 2
* HSE Frequency(Hz) = 25000000
* PLL_M = 25
* PLL_N = 432
* PLL_P = 2
* PLL_Q = 9
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 7
* @param None
* @retval None
*/
void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 25;
RCC_OscInitStruct.PLL.PLLN = 432;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 9;
if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
while(1) {};
}
/* Activate the OverDrive to reach the 216 Mhz Frequency */
if(HAL_PWREx_EnableOverDrive() != HAL_OK)
{
while(1) {};
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_7) != HAL_OK)
{
while(1) {};
}
}
/**
* @brief Tx Transfer completed callback.
* @param I2cHandle: I2C handle.
* @note This example shows a simple way to report end of IT Tx transfer, and
* you can add your own implementation.
* @retval None
*/
#ifdef MASTER_BOARD
void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *I2cHandle)
{
/* Toggle LED6: Transfer in transmission process is correct */
BSP_LED_Toggle(LED6);
}
#else
void HAL_I2C_SlaveTxCpltCallback(I2C_HandleTypeDef *I2cHandle)
{
/* Toggle LED6: Transfer in transmission process is correct */
BSP_LED_Toggle(LED6);
}
#endif /* MASTER_BOARD */
/**
* @brief Rx Transfer completed callback.
* @param I2cHandle: I2C handle
* @note This example shows a simple way to report end of IT Rx transfer, and
* you can add your own implementation.
* @retval None
*/
#ifdef MASTER_BOARD
void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *I2cHandle)
{
/* Toggle LED6: Transfer in reception process is correct */
BSP_LED_Toggle(LED6);
}
#else
void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *I2cHandle)
{
/* Toggle LED6: Transfer in reception process is correct */
BSP_LED_Toggle(LED6);
}
#endif /* MASTER_BOARD */
/**
* @brief I2C error callbacks.
* @param I2cHandle: I2C handle
* @note This example shows a simple way to report transfer error, and you can
* add your own implementation.
* @retval None
*/
void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *I2cHandle)
{
/** Error_Handler() function is called when error occurs.
* 1- When Slave don't acknowledge it's address, Master restarts communication.
* 2- When Master don't acknowledge the last data transferred, Slave don't care in this example.
*/
if (HAL_I2C_GetError(I2cHandle) != HAL_I2C_ERROR_AF)
{
/* Turn Off LED6 */
BSP_LED_Off(LED6);
/* Turn On LED5 */
BSP_LED_On(LED5);
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* Turn LED5 on */
BSP_LED_On(LED5);
while(1)
{
}
}
/**
* @brief Compares two buffers.
* @param pBuffer1, pBuffer2: buffers to be compared.
* @param BufferLength: buffer's length
* @retval 0 : pBuffer1 identical to pBuffer2
* >0 : pBuffer1 differs from pBuffer2
*/
static uint16_t Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength)
{
while (BufferLength--)
{
if ((*pBuffer1) != *pBuffer2)
{
return BufferLength;
}
pBuffer1++;
pBuffer2++;
}
return 0;
}
/**
* @brief Configure the MPU attributes
* @param None
* @retval None
*/
static void MPU_Config(void)
{
MPU_Region_InitTypeDef MPU_InitStruct;
/* Disable the MPU */
HAL_MPU_Disable();
/* Configure the MPU as Strongly ordered for not defined regions */
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.BaseAddress = 0x00;
MPU_InitStruct.Size = MPU_REGION_SIZE_4GB;
MPU_InitStruct.AccessPermission = MPU_REGION_NO_ACCESS;
MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_SHAREABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER0;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
MPU_InitStruct.SubRegionDisable = 0x87;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_DISABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/* Enable the MPU */
HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT);
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @brief CPU L1-Cache enable.
* @param None
* @retval None
*/
static void CPU_CACHE_Enable(void)
{
/* Enable I-Cache */
SCB_EnableICache();
/* Enable D-Cache */
SCB_EnableDCache();
}
/**
* @}
*/
/**
* @}
*/