2019-04-29 14:39:56 +01:00
/**
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* @ file I2C / I2C_TwoBoards_ComIT / Src / main . c
* @ author MCD Application Team
* @ brief This sample code shows how to use STM32F7xx I2C HAL API to transmit
* and receive a data buffer with a communication process based on
* IT transfer .
* The communication is done using 2 Boards .
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* @ attention
*
2021-12-14 09:25:05 +01:00
* Copyright ( c ) 2016 STMicroelectronics .
* All rights reserved .
2019-04-29 14:39:56 +01:00
*
2021-12-14 09:25:05 +01:00
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component .
* If no LICENSE file comes with this software , it is provided AS - IS .
2019-04-29 14:39:56 +01:00
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
*/
/* Includes ------------------------------------------------------------------*/
# include "main.h"
/** @addtogroup STM32F7xx_HAL_Examples
* @ {
*/
/** @addtogroup I2C_TwoBoards_ComIT
* @ {
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Uncomment this line to use the board as master, if not it is used as slave */
# define MASTER_BOARD
# define I2C_ADDRESS 0x30F
/* I2C TIMING Register define when I2C clock source is SYSCLK */
/* I2C TIMING is calculated in case of the I2C Clock source is the SYSCLK = 72 MHz */
/* This example use TIMING to 0x00C4092A to reach 1 MHz speed (Rise time = 26ns, Fall time = 2ns) */
# define I2C_TIMING 0x00C4092A
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* I2C handler declaration */
I2C_HandleTypeDef I2cHandle ;
/* Buffer used for transmission */
uint8_t aTxBuffer [ ] = " ****I2C_TwoBoards communication based on IT**** ****I2C_TwoBoards communication based on IT**** ****I2C_TwoBoards communication based on IT**** " ;
/* Buffer used for reception */
uint8_t aRxBuffer [ RXBUFFERSIZE ] ;
/* Private function prototypes -----------------------------------------------*/
2021-12-14 09:25:05 +01:00
static void MPU_Config ( void ) ;
2019-04-29 14:39:56 +01:00
void SystemClock_Config ( void ) ;
static uint16_t Buffercmp ( uint8_t * pBuffer1 , uint8_t * pBuffer2 , uint16_t BufferLength ) ;
static void Error_Handler ( void ) ;
static void CPU_CACHE_Enable ( void ) ;
/* Private functions ---------------------------------------------------------*/
/**
* @ brief Main program
* @ param None
* @ retval None
*/
int main ( void )
{
2021-12-14 09:25:05 +01:00
/* Configure the MPU attributes */
MPU_Config ( ) ;
2019-04-29 14:39:56 +01:00
/* Enable the CPU Cache */
CPU_CACHE_Enable ( ) ;
/* STM32F7xx HAL library initialization:
- Configure the Flash ART accelerator
- Systick timer is configured by default as source of time base , but user
can eventually implement his proper time base source ( a general purpose
timer for example or other time source ) , keeping in mind that Time base
duration should be kept 1 ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis .
- Set NVIC Group Priority to 4
- Low Level Initialization
*/
HAL_Init ( ) ;
/* Configure the system clock to 216 MHz */
SystemClock_Config ( ) ;
/* Configure LED6 and LED5 */
BSP_LED_Init ( LED6 ) ;
BSP_LED_Init ( LED5 ) ;
/*##-1- Configure the I2C peripheral ######################################*/
I2cHandle . Instance = I2Cx ;
I2cHandle . Init . Timing = I2C_TIMING ;
I2cHandle . Init . OwnAddress1 = I2C_ADDRESS ;
I2cHandle . Init . AddressingMode = I2C_ADDRESSINGMODE_10BIT ;
I2cHandle . Init . DualAddressMode = I2C_DUALADDRESS_DISABLE ;
I2cHandle . Init . OwnAddress2 = 0xFF ;
I2cHandle . Init . GeneralCallMode = I2C_GENERALCALL_DISABLE ;
I2cHandle . Init . NoStretchMode = I2C_NOSTRETCH_DISABLE ;
if ( HAL_I2C_Init ( & I2cHandle ) ! = HAL_OK )
{
/* Initialization Error */
Error_Handler ( ) ;
}
/* Enable the Analog I2C Filter */
HAL_I2CEx_ConfigAnalogFilter ( & I2cHandle , I2C_ANALOGFILTER_ENABLE ) ;
# ifdef MASTER_BOARD
/* Configure User/WakeUp push-button */
BSP_PB_Init ( BUTTON_USER , BUTTON_MODE_GPIO ) ;
/* Wait for User/WakeUp push-button press before starting the Communication */
while ( BSP_PB_GetState ( BUTTON_USER ) ! = GPIO_PIN_SET )
{
}
/* Delay to avoid that possible signal rebound is taken as button release */
HAL_Delay ( 50 ) ;
/* Wait for User/WakeUp push-button release before starting the Communication */
while ( BSP_PB_GetState ( BUTTON_USER ) ! = GPIO_PIN_RESET )
{
}
/* The board sends the message and expects to receive it back */
/*##-2- Start the transmission process #####################################*/
/* While the I2C in reception process, user can transmit data through
" aTxBuffer " buffer */
do
{
if ( HAL_I2C_Master_Transmit_IT ( & I2cHandle , ( uint16_t ) I2C_ADDRESS , ( uint8_t * ) aTxBuffer , TXBUFFERSIZE ) ! = HAL_OK )
{
/* Error_Handler() function is called when error occurs. */
Error_Handler ( ) ;
}
/*##-3- Wait for the end of the transfer #################################*/
/* Before starting a new communication transfer, you need to check the current
state of the peripheral ; if it <EFBFBD> s busy you need to wait for the end of current
transfer before starting a new one .
For simplicity reasons , this example is just waiting till the end of the
transfer , but application may perform other tasks while transfer operation
is ongoing . */
while ( HAL_I2C_GetState ( & I2cHandle ) ! = HAL_I2C_STATE_READY )
{
}
/* When Acknowledge failure occurs (Slave don't acknowledge it's address)
Master restarts communication */
}
while ( HAL_I2C_GetError ( & I2cHandle ) = = HAL_I2C_ERROR_AF ) ;
/* Wait for User/WakeUp push-button press before starting the Communication */
while ( BSP_PB_GetState ( BUTTON_USER ) ! = GPIO_PIN_SET )
{
}
/* Delay to avoid that possible signal rebound is taken as button release */
HAL_Delay ( 50 ) ;
/* Wait for User/WakeUp push-button release before starting the Communication */
while ( BSP_PB_GetState ( BUTTON_USER ) ! = GPIO_PIN_RESET )
{
}
/*##-4- Put I2C peripheral in reception process ###########################*/
do
{
if ( HAL_I2C_Master_Receive_IT ( & I2cHandle , ( uint16_t ) I2C_ADDRESS , ( uint8_t * ) aRxBuffer , RXBUFFERSIZE ) ! = HAL_OK )
{
/* Error_Handler() function is called when error occurs. */
Error_Handler ( ) ;
}
/*##-5- Wait for the end of the transfer #################################*/
/* Before starting a new communication transfer, you need to check the current
state of the peripheral ; if it <EFBFBD> s busy you need to wait for the end of current
transfer before starting a new one .
For simplicity reasons , this example is just waiting till the end of the
transfer , but application may perform other tasks while transfer operation
is ongoing . */
while ( HAL_I2C_GetState ( & I2cHandle ) ! = HAL_I2C_STATE_READY )
{
}
/* When Acknowledge failure occurs (Slave don't acknowledge it's address)
Master restarts communication */
}
while ( HAL_I2C_GetError ( & I2cHandle ) = = HAL_I2C_ERROR_AF ) ;
# else
/* The board receives the message and sends it back */
/*##-2- Put I2C peripheral in reception process ###########################*/
if ( HAL_I2C_Slave_Receive_IT ( & I2cHandle , ( uint8_t * ) aRxBuffer , RXBUFFERSIZE ) ! = HAL_OK )
{
/* Transfer error in reception process */
Error_Handler ( ) ;
}
/*##-3- Wait for the end of the transfer ###################################*/
/* Before starting a new communication transfer, you need to check the current
state of the peripheral ; if it <EFBFBD> s busy you need to wait for the end of current
transfer before starting a new one .
For simplicity reasons , this example is just waiting till the end of the
transfer , but application may perform other tasks while transfer operation
is ongoing . */
while ( HAL_I2C_GetState ( & I2cHandle ) ! = HAL_I2C_STATE_READY )
{
}
/*##-4- Start the transmission process #####################################*/
/* While the I2C in reception process, user can transmit data through
" aTxBuffer " buffer */
if ( HAL_I2C_Slave_Transmit_IT ( & I2cHandle , ( uint8_t * ) aTxBuffer , TXBUFFERSIZE ) ! = HAL_OK )
{
/* Transfer error in transmission process */
Error_Handler ( ) ;
}
# endif /* MASTER_BOARD */
/*##-5- Wait for the end of the transfer ###################################*/
/* Before starting a new communication transfer, you need to check the current
state of the peripheral ; if it <EFBFBD> s busy you need to wait for the end of current
transfer before starting a new one .
For simplicity reasons , this example is just waiting till the end of the
transfer , but application may perform other tasks while transfer operation
is ongoing . */
while ( HAL_I2C_GetState ( & I2cHandle ) ! = HAL_I2C_STATE_READY )
{
}
/*##-6- Compare the sent and received buffers ##############################*/
if ( Buffercmp ( ( uint8_t * ) aTxBuffer , ( uint8_t * ) aRxBuffer , RXBUFFERSIZE ) )
{
/* Processing Error */
Error_Handler ( ) ;
}
/* Infinite loop */
while ( 1 )
{
}
}
/**
* @ brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL ( HSE )
* SYSCLK ( Hz ) = 216000000
* HCLK ( Hz ) = 216000000
* AHB Prescaler = 1
* APB1 Prescaler = 4
* APB2 Prescaler = 2
* HSE Frequency ( Hz ) = 25000000
* PLL_M = 25
* PLL_N = 432
* PLL_P = 2
* PLL_Q = 9
* VDD ( V ) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency ( WS ) = 7
* @ param None
* @ retval None
*/
void SystemClock_Config ( void )
{
RCC_ClkInitTypeDef RCC_ClkInitStruct ;
RCC_OscInitTypeDef RCC_OscInitStruct ;
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct . OscillatorType = RCC_OSCILLATORTYPE_HSE ;
RCC_OscInitStruct . HSEState = RCC_HSE_ON ;
RCC_OscInitStruct . PLL . PLLState = RCC_PLL_ON ;
RCC_OscInitStruct . PLL . PLLSource = RCC_PLLSOURCE_HSE ;
RCC_OscInitStruct . PLL . PLLM = 25 ;
RCC_OscInitStruct . PLL . PLLN = 432 ;
RCC_OscInitStruct . PLL . PLLP = RCC_PLLP_DIV2 ;
RCC_OscInitStruct . PLL . PLLQ = 9 ;
if ( HAL_RCC_OscConfig ( & RCC_OscInitStruct ) ! = HAL_OK )
{
while ( 1 ) { } ;
}
/* Activate the OverDrive to reach the 216 Mhz Frequency */
if ( HAL_PWREx_EnableOverDrive ( ) ! = HAL_OK )
{
while ( 1 ) { } ;
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
clocks dividers */
RCC_ClkInitStruct . ClockType = ( RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2 ) ;
RCC_ClkInitStruct . SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK ;
RCC_ClkInitStruct . AHBCLKDivider = RCC_SYSCLK_DIV1 ;
RCC_ClkInitStruct . APB1CLKDivider = RCC_HCLK_DIV4 ;
RCC_ClkInitStruct . APB2CLKDivider = RCC_HCLK_DIV2 ;
if ( HAL_RCC_ClockConfig ( & RCC_ClkInitStruct , FLASH_LATENCY_7 ) ! = HAL_OK )
{
while ( 1 ) { } ;
}
}
/**
* @ brief Tx Transfer completed callback .
* @ param I2cHandle : I2C handle .
* @ note This example shows a simple way to report end of IT Tx transfer , and
* you can add your own implementation .
* @ retval None
*/
# ifdef MASTER_BOARD
void HAL_I2C_MasterTxCpltCallback ( I2C_HandleTypeDef * I2cHandle )
{
/* Toggle LED6: Transfer in transmission process is correct */
BSP_LED_Toggle ( LED6 ) ;
}
# else
void HAL_I2C_SlaveTxCpltCallback ( I2C_HandleTypeDef * I2cHandle )
{
/* Toggle LED6: Transfer in transmission process is correct */
BSP_LED_Toggle ( LED6 ) ;
}
# endif /* MASTER_BOARD */
/**
* @ brief Rx Transfer completed callback .
* @ param I2cHandle : I2C handle
* @ note This example shows a simple way to report end of IT Rx transfer , and
* you can add your own implementation .
* @ retval None
*/
# ifdef MASTER_BOARD
void HAL_I2C_MasterRxCpltCallback ( I2C_HandleTypeDef * I2cHandle )
{
/* Toggle LED6: Transfer in reception process is correct */
BSP_LED_Toggle ( LED6 ) ;
}
# else
void HAL_I2C_SlaveRxCpltCallback ( I2C_HandleTypeDef * I2cHandle )
{
/* Toggle LED6: Transfer in reception process is correct */
BSP_LED_Toggle ( LED6 ) ;
}
# endif /* MASTER_BOARD */
/**
* @ brief I2C error callbacks .
* @ param I2cHandle : I2C handle
* @ note This example shows a simple way to report transfer error , and you can
* add your own implementation .
* @ retval None
*/
void HAL_I2C_ErrorCallback ( I2C_HandleTypeDef * I2cHandle )
{
/** Error_Handler() function is called when error occurs.
* 1 - When Slave don ' t acknowledge it ' s address , Master restarts communication .
* 2 - When Master don ' t acknowledge the last data transferred , Slave don ' t care in this example .
*/
if ( HAL_I2C_GetError ( I2cHandle ) ! = HAL_I2C_ERROR_AF )
{
/* Turn Off LED6 */
BSP_LED_Off ( LED6 ) ;
/* Turn On LED5 */
BSP_LED_On ( LED5 ) ;
}
}
/**
* @ brief This function is executed in case of error occurrence .
* @ param None
* @ retval None
*/
static void Error_Handler ( void )
{
/* Turn LED5 on */
BSP_LED_On ( LED5 ) ;
while ( 1 )
{
}
}
/**
* @ brief Compares two buffers .
* @ param pBuffer1 , pBuffer2 : buffers to be compared .
* @ param BufferLength : buffer ' s length
* @ retval 0 : pBuffer1 identical to pBuffer2
* > 0 : pBuffer1 differs from pBuffer2
*/
static uint16_t Buffercmp ( uint8_t * pBuffer1 , uint8_t * pBuffer2 , uint16_t BufferLength )
{
while ( BufferLength - - )
{
if ( ( * pBuffer1 ) ! = * pBuffer2 )
{
return BufferLength ;
}
pBuffer1 + + ;
pBuffer2 + + ;
}
return 0 ;
}
2021-12-14 09:25:05 +01:00
/**
* @ brief Configure the MPU attributes
* @ param None
* @ retval None
*/
static void MPU_Config ( void )
{
MPU_Region_InitTypeDef MPU_InitStruct ;
/* Disable the MPU */
HAL_MPU_Disable ( ) ;
/* Configure the MPU as Strongly ordered for not defined regions */
MPU_InitStruct . Enable = MPU_REGION_ENABLE ;
MPU_InitStruct . BaseAddress = 0x00 ;
MPU_InitStruct . Size = MPU_REGION_SIZE_4GB ;
MPU_InitStruct . AccessPermission = MPU_REGION_NO_ACCESS ;
MPU_InitStruct . IsBufferable = MPU_ACCESS_NOT_BUFFERABLE ;
MPU_InitStruct . IsCacheable = MPU_ACCESS_NOT_CACHEABLE ;
MPU_InitStruct . IsShareable = MPU_ACCESS_SHAREABLE ;
MPU_InitStruct . Number = MPU_REGION_NUMBER0 ;
MPU_InitStruct . TypeExtField = MPU_TEX_LEVEL0 ;
MPU_InitStruct . SubRegionDisable = 0x87 ;
MPU_InitStruct . DisableExec = MPU_INSTRUCTION_ACCESS_DISABLE ;
HAL_MPU_ConfigRegion ( & MPU_InitStruct ) ;
/* Enable the MPU */
HAL_MPU_Enable ( MPU_PRIVILEGED_DEFAULT ) ;
}
2019-04-29 14:39:56 +01:00
# ifdef USE_FULL_ASSERT
/**
* @ brief Reports the name of the source file and the source line number
* where the assert_param error has occurred .
* @ param file : pointer to the source file name
* @ param line : assert_param error line source number
* @ retval None
*/
void assert_failed ( uint8_t * file , uint32_t line )
{
/* User can add his own implementation to report the file name and line number,
ex : printf ( " Wrong parameters value: file %s on line %d \r \n " , file , line ) */
/* Infinite loop */
while ( 1 )
{
}
}
# endif
/**
* @ brief CPU L1 - Cache enable .
* @ param None
* @ retval None
*/
static void CPU_CACHE_Enable ( void )
{
/* Enable I-Cache */
SCB_EnableICache ( ) ;
/* Enable D-Cache */
SCB_EnableDCache ( ) ;
}
/**
* @ }
*/
/**
* @ }
*/