mirror of
https://github.com/STMicroelectronics/STM32CubeF4.git
synced 2025-05-03 22:17:07 +08:00
374 lines
13 KiB
C
374 lines
13 KiB
C
/**
|
||
******************************************************************************
|
||
* @file I2C/I2C_EEPROM/Src/main.c
|
||
* @author MCD Application Team
|
||
* @brief This sample code shows how to use STM32F4xx I2C HAL API to transmit
|
||
* and receive a data buffer with a communication process based on
|
||
* DMA transfer.
|
||
******************************************************************************
|
||
* @attention
|
||
*
|
||
* <h2><center>© COPYRIGHT 2017 STMicroelectronics</center></h2>
|
||
*
|
||
* Redistribution and use in source and binary forms, with or without modification,
|
||
* are permitted provided that the following conditions are met:
|
||
* 1. Redistributions of source code must retain the above copyright notice,
|
||
* this list of conditions and the following disclaimer.
|
||
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
||
* this list of conditions and the following disclaimer in the documentation
|
||
* and/or other materials provided with the distribution.
|
||
* 3. Neither the name of STMicroelectronics nor the names of its contributors
|
||
* may be used to endorse or promote products derived from this software
|
||
* without specific prior written permission.
|
||
*
|
||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
*
|
||
******************************************************************************
|
||
*/
|
||
|
||
/* Includes ------------------------------------------------------------------*/
|
||
#include "main.h"
|
||
|
||
/** @addtogroup STM32F4xx_HAL_Examples
|
||
* @{
|
||
*/
|
||
|
||
/** @addtogroup I2C_EEPROM
|
||
* @{
|
||
*/
|
||
|
||
/* Private typedef -----------------------------------------------------------*/
|
||
/* Private define ------------------------------------------------------------*/
|
||
#define EEPROM_ADDRESS 0xA6
|
||
#define EEPROM_PAGESIZE 4 /* RF EEPROM ANT7-M24LR-A used */
|
||
|
||
/* Maximum Timeout values for flags waiting loops. These timeouts are not based
|
||
on accurate values, they just guarantee that the application will not remain
|
||
stuck if the I2C communication is corrupted.
|
||
You may modify these timeout values depending on CPU frequency and application
|
||
conditions (interrupts routines ...). */
|
||
#define I2Cx_TIMEOUT_MAX 300
|
||
/* Maximum number of trials for HAL_I2C_IsDeviceReady() function */
|
||
#define EEPROM_MAX_TRIALS 300
|
||
|
||
/* Private macro -------------------------------------------------------------*/
|
||
/* Private variables ---------------------------------------------------------*/
|
||
/* I2C handler declaration */
|
||
FMPI2C_HandleTypeDef I2cHandle;
|
||
|
||
/* Buffer used for transmission */
|
||
uint8_t aTxBuffer[] = " ****I2C EEPROM communication based on DMA**** ****I2C EEPROM communication based on DMA**** ****I2C EEPROM communication based on DMA**** ";
|
||
|
||
/* Buffer used for reception */
|
||
uint8_t aRxBuffer[RXBUFFERSIZE];
|
||
|
||
/* Useful variables during communication */
|
||
uint16_t Memory_Address;
|
||
int Remaining_Bytes;
|
||
|
||
/* Private function prototypes -----------------------------------------------*/
|
||
static void SystemClock_Config(void);
|
||
static uint16_t Buffercmp(uint8_t *pBuffer1, uint8_t *pBuffer2, uint16_t BufferLength);
|
||
static void Error_Handler(void);
|
||
|
||
/* Private functions ---------------------------------------------------------*/
|
||
|
||
/**
|
||
* @brief Main program
|
||
* @param None
|
||
* @retval None
|
||
*/
|
||
int main(void)
|
||
{
|
||
/* STM32F4xx HAL library initialization:
|
||
- Configure the Flash prefetch
|
||
- Systick timer is configured by default as source of time base, but user
|
||
can eventually implement his proper time base source (a general purpose
|
||
timer for example or other time source), keeping in mind that Time base
|
||
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
|
||
handled in milliseconds basis.
|
||
- Set NVIC Group Priority to 4
|
||
- Low Level Initialization
|
||
*/
|
||
HAL_Init();
|
||
|
||
/* Configure the system clock to 180 MHz */
|
||
SystemClock_Config();
|
||
|
||
/* Configure LED1 and LED3 */
|
||
BSP_LED_Init(LED1);
|
||
BSP_LED_Init(LED3);
|
||
|
||
/*##-1- Configure the I2C peripheral #######################################*/
|
||
I2cHandle.Instance = I2Cx;
|
||
|
||
I2cHandle.Init.Timing = EVAL_I2Cx_TIMING;
|
||
I2cHandle.Init.OwnAddress1 = 0x00;
|
||
I2cHandle.Init.AddressingMode = FMPI2C_ADDRESSINGMODE_7BIT;
|
||
I2cHandle.Init.DualAddressMode = FMPI2C_DUALADDRESS_DISABLE;
|
||
I2cHandle.Init.OwnAddress2 = 0x00;
|
||
I2cHandle.Init.GeneralCallMode = FMPI2C_GENERALCALL_DISABLE;
|
||
I2cHandle.Init.NoStretchMode = FMPI2C_NOSTRETCH_DISABLE;
|
||
|
||
if (HAL_FMPI2C_Init(&I2cHandle) != HAL_OK)
|
||
{
|
||
/* Initialization Error */
|
||
Error_Handler();
|
||
}
|
||
|
||
/* The board sends the message to EEPROM then reads it back */
|
||
|
||
/*##-2- Start writing process ##############################################*/
|
||
/* Initialize Remaining Bytes Value to TX Buffer Size */
|
||
Remaining_Bytes = TXBUFFERSIZE;
|
||
/* Initialize Memory address to 0 since EEPROM write will start from address 0 */
|
||
Memory_Address = 0;
|
||
/* Since page size is 4 bytes, the write procedure will be done in a loop */
|
||
while (Remaining_Bytes > 0)
|
||
{
|
||
|
||
/* Write EEPROM_PAGESIZE */
|
||
if(HAL_FMPI2C_Mem_Write_DMA(&I2cHandle , (uint16_t)EEPROM_ADDRESS, Memory_Address, FMPI2C_MEMADD_SIZE_16BIT, (uint8_t*)(aTxBuffer + Memory_Address), EEPROM_PAGESIZE)!= HAL_OK)
|
||
{
|
||
/* Writing process Error */
|
||
Error_Handler();
|
||
}
|
||
|
||
/* Wait for the end of the transfer */
|
||
/* Before starting a new communication transfer, you need to check the current
|
||
state of the peripheral; if it<69>s busy you need to wait for the end of current
|
||
transfer before starting a new one.
|
||
For simplicity reasons, this example is just waiting till the end of the
|
||
transfer, but application may perform other tasks while transfer operation
|
||
is ongoing. */
|
||
while (HAL_FMPI2C_GetState(&I2cHandle) != HAL_FMPI2C_STATE_READY)
|
||
{
|
||
}
|
||
|
||
/* Check if the EEPROM is ready for a new operation */
|
||
while (HAL_FMPI2C_IsDeviceReady(&I2cHandle, EEPROM_ADDRESS, EEPROM_MAX_TRIALS, I2Cx_TIMEOUT_MAX) == HAL_TIMEOUT);
|
||
|
||
/* Wait for the end of the transfer */
|
||
while (HAL_FMPI2C_GetState(&I2cHandle) != HAL_FMPI2C_STATE_READY)
|
||
{
|
||
}
|
||
|
||
/* Update Remaining bytes and Memory Address values */
|
||
Remaining_Bytes -= EEPROM_PAGESIZE;
|
||
Memory_Address += EEPROM_PAGESIZE;
|
||
}
|
||
|
||
/*##-3- Start reading process ##############################################*/
|
||
if (HAL_FMPI2C_Mem_Read_DMA(&I2cHandle, (uint16_t)EEPROM_ADDRESS, 0, FMPI2C_MEMADD_SIZE_16BIT, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK)
|
||
{
|
||
/* Reading process Error */
|
||
Error_Handler();
|
||
}
|
||
|
||
/* Wait for the end of the transfer */
|
||
while (HAL_FMPI2C_GetState(&I2cHandle) != HAL_FMPI2C_STATE_READY)
|
||
{
|
||
}
|
||
|
||
/*##-4- Compare the sent and received buffers ##############################*/
|
||
if (Buffercmp((uint8_t *)aTxBuffer, (uint8_t *)aRxBuffer, RXBUFFERSIZE))
|
||
{
|
||
/* Processing Error */
|
||
Error_Handler();
|
||
}
|
||
|
||
/* Infinite loop */
|
||
while (1)
|
||
{
|
||
BSP_LED_Toggle(LED1);
|
||
HAL_Delay(250);
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief System Clock Configuration
|
||
* The system Clock is configured as follow :
|
||
* System Clock source = PLL (HSE)
|
||
* SYSCLK(Hz) = 180000000
|
||
* HCLK(Hz) = 180000000
|
||
* AHB Prescaler = 1
|
||
* APB1 Prescaler = 4
|
||
* APB2 Prescaler = 2
|
||
* HSE Frequency(Hz) = 8000000
|
||
* PLL_M = 8
|
||
* PLL_N = 360
|
||
* PLL_P = 2
|
||
* PLL_Q = 7
|
||
* VDD(V) = 3.3
|
||
* Main regulator output voltage = Scale1 mode
|
||
* Flash Latency(WS) = 5
|
||
* @param None
|
||
* @retval None
|
||
*/
|
||
static void SystemClock_Config(void)
|
||
{
|
||
RCC_ClkInitTypeDef RCC_ClkInitStruct;
|
||
RCC_OscInitTypeDef RCC_OscInitStruct;
|
||
HAL_StatusTypeDef ret = HAL_OK;
|
||
|
||
/* Enable Power Control clock */
|
||
__HAL_RCC_PWR_CLK_ENABLE();
|
||
|
||
/* The voltage scaling allows optimizing the power consumption when the device is
|
||
clocked below the maximum system frequency, to update the voltage scaling value
|
||
regarding system frequency refer to product datasheet. */
|
||
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
|
||
|
||
/* Enable HSE Oscillator and activate PLL with HSE as source */
|
||
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
|
||
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
|
||
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
|
||
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
|
||
RCC_OscInitStruct.PLL.PLLM = 8;
|
||
RCC_OscInitStruct.PLL.PLLN = 360;
|
||
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
|
||
RCC_OscInitStruct.PLL.PLLQ = 7;
|
||
RCC_OscInitStruct.PLL.PLLR = 2;
|
||
|
||
ret = HAL_RCC_OscConfig(&RCC_OscInitStruct);
|
||
if(ret != HAL_OK)
|
||
{
|
||
while(1) { ; }
|
||
}
|
||
|
||
/* Activate the OverDrive to reach the 180 MHz Frequency */
|
||
ret = HAL_PWREx_EnableOverDrive();
|
||
if(ret != HAL_OK)
|
||
{
|
||
while(1) { ; }
|
||
}
|
||
|
||
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */
|
||
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
|
||
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
|
||
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
|
||
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
|
||
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
|
||
|
||
ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5);
|
||
if(ret != HAL_OK)
|
||
{
|
||
while(1) { ; }
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief Tx Transfer completed callback.
|
||
* @param I2cHandle: I2C handle
|
||
* @note This example shows a simple way to report end of DMA Tx transfer, and
|
||
* you can add your own implementation.
|
||
* @retval None
|
||
*/
|
||
void HAL_FMPI2C_MemTxCpltCallback(FMPI2C_HandleTypeDef *I2cHandle)
|
||
{
|
||
/* Turn LED1 on: Transfer in transmission process is correct */
|
||
BSP_LED_On(LED1);
|
||
}
|
||
|
||
/**
|
||
* @brief Rx Transfer completed callback.
|
||
* @param I2cHandle: I2C handle
|
||
* @note This example shows a simple way to report end of DMA Rx transfer, and
|
||
* you can add your own implementation.
|
||
* @retval None
|
||
*/
|
||
void HAL_FMPI2C_MemRxCpltCallback(FMPI2C_HandleTypeDef *I2cHandle)
|
||
{
|
||
/* Turn LED1 on: Transfer in reception process is correct */
|
||
BSP_LED_Off(LED1);
|
||
}
|
||
|
||
/**
|
||
* @brief I2C error callbacks.
|
||
* @param I2cHandle: I2C handle
|
||
* @note This example shows a simple way to report transfer error, and you can
|
||
* add your own implementation.
|
||
* @retval None
|
||
*/
|
||
void HAL_FMPI2C_ErrorCallback(FMPI2C_HandleTypeDef *I2cHandle)
|
||
{
|
||
/* Turn LED3 on: Transfer error in reception/transmission process */
|
||
BSP_LED_On(LED3);
|
||
}
|
||
|
||
/**
|
||
* @brief This function is executed in case of error occurrence.
|
||
* @param None
|
||
* @retval None
|
||
*/
|
||
static void Error_Handler(void)
|
||
{
|
||
/* Turn LED3 on */
|
||
BSP_LED_On(LED3);
|
||
while (1)
|
||
{
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief Compares two buffers.
|
||
* @param pBuffer1, pBuffer2: buffers to be compared.
|
||
* @param BufferLength: buffer's length
|
||
* @retval 0 : pBuffer1 identical to pBuffer2
|
||
* >0 : pBuffer1 differs from pBuffer2
|
||
*/
|
||
static uint16_t Buffercmp(uint8_t *pBuffer1, uint8_t *pBuffer2, uint16_t BufferLength)
|
||
{
|
||
while (BufferLength--)
|
||
{
|
||
if ((*pBuffer1) != *pBuffer2)
|
||
{
|
||
return BufferLength;
|
||
}
|
||
pBuffer1++;
|
||
pBuffer2++;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
#ifdef USE_FULL_ASSERT
|
||
|
||
/**
|
||
* @brief Reports the name of the source file and the source line number
|
||
* where the assert_param error has occurred.
|
||
* @param file: pointer to the source file name
|
||
* @param line: assert_param error line source number
|
||
* @retval None
|
||
*/
|
||
void assert_failed(uint8_t *file, uint32_t line)
|
||
{
|
||
/* User can add his own implementation to report the file name and line number,
|
||
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
|
||
|
||
/* Infinite loop */
|
||
while (1)
|
||
{
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/**
|
||
* @}
|
||
*/
|
||
|
||
/**
|
||
* @}
|
||
*/
|
||
|
||
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|