/**
******************************************************************************
* @file I2C/I2C_EEPROM/Src/main.c
* @author MCD Application Team
* @brief This sample code shows how to use STM32F4xx I2C HAL API to transmit
* and receive a data buffer with a communication process based on
* DMA transfer.
******************************************************************************
* @attention
*
*
© COPYRIGHT 2017 STMicroelectronics
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F4xx_HAL_Examples
* @{
*/
/** @addtogroup I2C_EEPROM
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define EEPROM_ADDRESS 0xA6
#define EEPROM_PAGESIZE 4 /* RF EEPROM ANT7-M24LR-A used */
/* Maximum Timeout values for flags waiting loops. These timeouts are not based
on accurate values, they just guarantee that the application will not remain
stuck if the I2C communication is corrupted.
You may modify these timeout values depending on CPU frequency and application
conditions (interrupts routines ...). */
#define I2Cx_TIMEOUT_MAX 300
/* Maximum number of trials for HAL_I2C_IsDeviceReady() function */
#define EEPROM_MAX_TRIALS 300
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* I2C handler declaration */
FMPI2C_HandleTypeDef I2cHandle;
/* Buffer used for transmission */
uint8_t aTxBuffer[] = " ****I2C EEPROM communication based on DMA**** ****I2C EEPROM communication based on DMA**** ****I2C EEPROM communication based on DMA**** ";
/* Buffer used for reception */
uint8_t aRxBuffer[RXBUFFERSIZE];
/* Useful variables during communication */
uint16_t Memory_Address;
int Remaining_Bytes;
/* Private function prototypes -----------------------------------------------*/
static void SystemClock_Config(void);
static uint16_t Buffercmp(uint8_t *pBuffer1, uint8_t *pBuffer2, uint16_t BufferLength);
static void Error_Handler(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/* STM32F4xx HAL library initialization:
- Configure the Flash prefetch
- Systick timer is configured by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
- Set NVIC Group Priority to 4
- Low Level Initialization
*/
HAL_Init();
/* Configure the system clock to 180 MHz */
SystemClock_Config();
/* Configure LED1 and LED3 */
BSP_LED_Init(LED1);
BSP_LED_Init(LED3);
/*##-1- Configure the I2C peripheral #######################################*/
I2cHandle.Instance = I2Cx;
I2cHandle.Init.Timing = EVAL_I2Cx_TIMING;
I2cHandle.Init.OwnAddress1 = 0x00;
I2cHandle.Init.AddressingMode = FMPI2C_ADDRESSINGMODE_7BIT;
I2cHandle.Init.DualAddressMode = FMPI2C_DUALADDRESS_DISABLE;
I2cHandle.Init.OwnAddress2 = 0x00;
I2cHandle.Init.GeneralCallMode = FMPI2C_GENERALCALL_DISABLE;
I2cHandle.Init.NoStretchMode = FMPI2C_NOSTRETCH_DISABLE;
if (HAL_FMPI2C_Init(&I2cHandle) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/* The board sends the message to EEPROM then reads it back */
/*##-2- Start writing process ##############################################*/
/* Initialize Remaining Bytes Value to TX Buffer Size */
Remaining_Bytes = TXBUFFERSIZE;
/* Initialize Memory address to 0 since EEPROM write will start from address 0 */
Memory_Address = 0;
/* Since page size is 4 bytes, the write procedure will be done in a loop */
while (Remaining_Bytes > 0)
{
/* Write EEPROM_PAGESIZE */
if(HAL_FMPI2C_Mem_Write_DMA(&I2cHandle , (uint16_t)EEPROM_ADDRESS, Memory_Address, FMPI2C_MEMADD_SIZE_16BIT, (uint8_t*)(aTxBuffer + Memory_Address), EEPROM_PAGESIZE)!= HAL_OK)
{
/* Writing process Error */
Error_Handler();
}
/* Wait for the end of the transfer */
/* Before starting a new communication transfer, you need to check the current
state of the peripheral; if it’s busy you need to wait for the end of current
transfer before starting a new one.
For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_FMPI2C_GetState(&I2cHandle) != HAL_FMPI2C_STATE_READY)
{
}
/* Check if the EEPROM is ready for a new operation */
while (HAL_FMPI2C_IsDeviceReady(&I2cHandle, EEPROM_ADDRESS, EEPROM_MAX_TRIALS, I2Cx_TIMEOUT_MAX) == HAL_TIMEOUT);
/* Wait for the end of the transfer */
while (HAL_FMPI2C_GetState(&I2cHandle) != HAL_FMPI2C_STATE_READY)
{
}
/* Update Remaining bytes and Memory Address values */
Remaining_Bytes -= EEPROM_PAGESIZE;
Memory_Address += EEPROM_PAGESIZE;
}
/*##-3- Start reading process ##############################################*/
if (HAL_FMPI2C_Mem_Read_DMA(&I2cHandle, (uint16_t)EEPROM_ADDRESS, 0, FMPI2C_MEMADD_SIZE_16BIT, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK)
{
/* Reading process Error */
Error_Handler();
}
/* Wait for the end of the transfer */
while (HAL_FMPI2C_GetState(&I2cHandle) != HAL_FMPI2C_STATE_READY)
{
}
/*##-4- Compare the sent and received buffers ##############################*/
if (Buffercmp((uint8_t *)aTxBuffer, (uint8_t *)aRxBuffer, RXBUFFERSIZE))
{
/* Processing Error */
Error_Handler();
}
/* Infinite loop */
while (1)
{
BSP_LED_Toggle(LED1);
HAL_Delay(250);
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 180000000
* HCLK(Hz) = 180000000
* AHB Prescaler = 1
* APB1 Prescaler = 4
* APB2 Prescaler = 2
* HSE Frequency(Hz) = 8000000
* PLL_M = 8
* PLL_N = 360
* PLL_P = 2
* PLL_Q = 7
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 5
* @param None
* @retval None
*/
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
HAL_StatusTypeDef ret = HAL_OK;
/* Enable Power Control clock */
__HAL_RCC_PWR_CLK_ENABLE();
/* The voltage scaling allows optimizing the power consumption when the device is
clocked below the maximum system frequency, to update the voltage scaling value
regarding system frequency refer to product datasheet. */
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 360;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
RCC_OscInitStruct.PLL.PLLR = 2;
ret = HAL_RCC_OscConfig(&RCC_OscInitStruct);
if(ret != HAL_OK)
{
while(1) { ; }
}
/* Activate the OverDrive to reach the 180 MHz Frequency */
ret = HAL_PWREx_EnableOverDrive();
if(ret != HAL_OK)
{
while(1) { ; }
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5);
if(ret != HAL_OK)
{
while(1) { ; }
}
}
/**
* @brief Tx Transfer completed callback.
* @param I2cHandle: I2C handle
* @note This example shows a simple way to report end of DMA Tx transfer, and
* you can add your own implementation.
* @retval None
*/
void HAL_FMPI2C_MemTxCpltCallback(FMPI2C_HandleTypeDef *I2cHandle)
{
/* Turn LED1 on: Transfer in transmission process is correct */
BSP_LED_On(LED1);
}
/**
* @brief Rx Transfer completed callback.
* @param I2cHandle: I2C handle
* @note This example shows a simple way to report end of DMA Rx transfer, and
* you can add your own implementation.
* @retval None
*/
void HAL_FMPI2C_MemRxCpltCallback(FMPI2C_HandleTypeDef *I2cHandle)
{
/* Turn LED1 on: Transfer in reception process is correct */
BSP_LED_Off(LED1);
}
/**
* @brief I2C error callbacks.
* @param I2cHandle: I2C handle
* @note This example shows a simple way to report transfer error, and you can
* add your own implementation.
* @retval None
*/
void HAL_FMPI2C_ErrorCallback(FMPI2C_HandleTypeDef *I2cHandle)
{
/* Turn LED3 on: Transfer error in reception/transmission process */
BSP_LED_On(LED3);
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* Turn LED3 on */
BSP_LED_On(LED3);
while (1)
{
}
}
/**
* @brief Compares two buffers.
* @param pBuffer1, pBuffer2: buffers to be compared.
* @param BufferLength: buffer's length
* @retval 0 : pBuffer1 identical to pBuffer2
* >0 : pBuffer1 differs from pBuffer2
*/
static uint16_t Buffercmp(uint8_t *pBuffer1, uint8_t *pBuffer2, uint16_t BufferLength)
{
while (BufferLength--)
{
if ((*pBuffer1) != *pBuffer2)
{
return BufferLength;
}
pBuffer1++;
pBuffer2++;
}
return 0;
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/