2019-07-15 15:37:15 +01:00

648 lines
26 KiB
C

/**
******************************************************************************
* @file ADC/ADC_Sequencer/Src/main.c
* @author MCD Application Team
* @brief This example provides a short description of how to use the ADC
* peripheral with sequencer, to convert several channels.
* Channels converted are 1 channel on external pin and 2 internal
* channels (VrefInt and temperature sensor).
* Moreover, voltage and temperature are then computed.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F3xx_HAL_Examples
* @{
*/
/** @addtogroup ADC_Sequencer
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define VDDA_APPLI ((uint32_t) 3300) /* Value of analog voltage supply Vdda (unit: mV) */
#define RANGE_12BITS ((uint32_t) 4095) /* Max digital value with a full range of 12 bits */
/* ADC parameters */
#define ADCCONVERTEDVALUES_BUFFER_SIZE ((uint32_t) 3) /* Size of array containing ADC converted values: set to ADC sequencer number of ranks converted, to have a rank in each address */
/* Internal temperature sensor: constants data used for indicative values in */
/* this example. Refer to device datasheet for min/typ/max values. */
/* For more accurate values, device should be calibrated on offset and slope */
/* for application temperature range. */
#define INTERNAL_TEMPSENSOR_V25 ((int32_t)1430) /* Internal temperature sensor, parameter V25 (unit: mV). Refer to device datasheet for min/typ/max values. */
#define INTERNAL_TEMPSENSOR_AVGSLOPE ((int32_t)4300) /* Internal temperature sensor, parameter Avg_Slope (unit: uV/DegCelsius). Refer to device datasheet for min/typ/max values. */
#define TEMP30_CAL_ADDR ((uint16_t*) ((uint32_t)0x1FFFF7B8)) /* Internal temperature sensor, parameter TS_CAL1: TS ADC raw data acquired at a temperature of 110 DegC (+-5 DegC) */
#define TEMP110_CAL_ADDR ((uint16_t*) ((uint32_t)0x1FFFF7C2)) /* Internal temperature sensor, parameter TS_CAL2: TS ADC raw data acquired at a temperature of 30 DegC (+-5 DegC) */
#define VDDA_TEMP_CAL ((uint32_t) 3300) /* Vdda value with which temperature sensor has been calibrated in production (+-10 mV). */
/* Internal voltage reference */
#define VREFINT_CAL ((uint16_t*) ((uint32_t)0x1FFFF7BA)) /* Internal temperature sensor, parameter VREFINT_CAL: Raw data acquired at a temperature of 30 DegC (+-5 DegC), VDDA = 3.3 V (+-10 mV). */
/* This calibration parameter is intended to calculate the actual VDDA from Vrefint ADC measurement. */
/* Private macro -------------------------------------------------------------*/
/**
* @brief Computation of temperature (unit: degree Celsius) from the internal
* temperature sensor measurement by ADC.
* Computation is using temperature sensor calibration values done
* in production.
* Computation formula:
* Temperature = (TS_ADC_DATA - TS_CAL1) * (110degC - 30degC)
* / (TS_CAL2 - TS_CAL1) + 30degC
* with TS_ADC_DATA = temperature sensor raw data measured by ADC
* Avg_Slope = (TS_CAL2 - TS_CAL1) / (110 - 30)
* TS_CAL1 = TS_ADC_DATA @30degC (calibrated in factory)
* TS_CAL2 = TS_ADC_DATA @110degC (calibrated in factory)
* Calculation validity conditioned to settings:
* - ADC resolution 12 bits (need to scale conversion value
* if using a different resolution).
* - Power supply of analog voltage set to literal VDDA_APPLI
* (need to scale value if using a different value of analog
* voltage supply).
* @param TS_ADC_DATA: Temperature sensor digital value measured by ADC
* @retval None
*/
#define COMPUTATION_TEMPERATURE_TEMP30_TEMP110(TS_ADC_DATA) \
(((( ((int32_t)((TS_ADC_DATA * VDDA_APPLI) / VDDA_TEMP_CAL) \
- (int32_t) *TEMP30_CAL_ADDR) \
) * (int32_t)(110 - 30) \
) / (int32_t)(*TEMP110_CAL_ADDR - *TEMP30_CAL_ADDR) \
) + 30 \
)
/**
* @brief Computation of temperature (unit: degree Celsius) from the internal
* temperature sensor measurement by ADC.
* Computation is using temperature sensor standard parameters (refer
* to device datasheet).
* Computation formula:
* Temperature = (VTS - V25)/Avg_Slope + 25
* with VTS = temperature sensor voltage
* Avg_Slope = temperature sensor slope (unit: uV/DegCelsius)
* V25 = temperature sensor @25degC and Vdda defined at VDDA_TEMP_CAL (unit: mV)
* Calculation validity conditioned to settings:
* - ADC resolution 12 bits (need to scale value if using a different
* resolution).
* - Power supply of analog voltage set to literal VDDA_APPLI
* (need to scale value if using a different value of analog
* voltage supply).
* @param TS_ADC_DATA: Temperature sensor digital value measured by ADC
* @retval None
*/
#define COMPUTATION_TEMPERATURE_STD_PARAMS_AVGSLOPE_V25(TS_ADC_DATA) \
((( ((int32_t)((INTERNAL_TEMPSENSOR_V25 * VDDA_TEMP_CAL) / VDDA_APPLI) \
- (int32_t)(((TS_ADC_DATA) * VDDA_APPLI) / RANGE_12BITS) \
) * 1000 \
) / INTERNAL_TEMPSENSOR_AVGSLOPE \
) + 25 \
)
/**
* @brief Computation of voltage (unit: mV) from ADC measurement digital
* value on range 12 bits.
* Calculation validity conditioned to settings:
* - ADC resolution 12 bits (need to scale value if using a different
* resolution).
* - Power supply of analog voltage Vdda 3.3V (need to scale value
* if using a different analog voltage supply value).
* @param ADC_DATA: Digital value measured by ADC
* @retval None
*/
#define COMPUTATION_DIGITAL_12BITS_TO_VOLTAGE(ADC_DATA) \
( ((ADC_DATA) * VDDA_APPLI) / RANGE_12BITS)
/* Private variables ---------------------------------------------------------*/
/* Peripherals handlers declaration */
/* ADC handler declaration */
ADC_HandleTypeDef AdcHandle;
#if defined(WAVEFORM_VOLTAGE_GENERATION_FOR_TEST)
/* DAC handler declaration */
DAC_HandleTypeDef DacHandle; /* DAC used for waveform voltage generation for test */
#endif /* WAVEFORM_VOLTAGE_GENERATION_FOR_TEST */
/* Variable containing ADC conversions results */
__IO uint16_t aADCxConvertedValues[ADCCONVERTEDVALUES_BUFFER_SIZE];
/* Variables for ADC conversions results computation to physical values */
uint16_t uhADCChannelToDAC_mVolt = 0;
uint16_t uhVrefInt_mVolt = 0;
int32_t wTemperature_DegreeCelsius = 0;
/* Variables to manage push button on board: interface between ExtLine interruption and main program */
uint8_t ubUserButtonClickCount = 0; /* Count number of clicks: Incremented after User Button interrupt */
__IO uint8_t ubUserButtonClickEvent = RESET; /* Event detection: Set after User Button interrupt */
/* Variable to report ADC sequencer status */
uint8_t ubSequenceCompleted = RESET; /* Set when all ranks of the sequence have been converted */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void Error_Handler(void);
static void ADC_Config(void);
#if defined(WAVEFORM_VOLTAGE_GENERATION_FOR_TEST)
static void WaveformVoltageGenerationForTest_Config(void);
static void WaveformVoltageGenerationForTest_Update(void);
#endif /* WAVEFORM_VOLTAGE_GENERATION_FOR_TEST */
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program.
* @param None
* @retval None
*/
int main(void)
{
/* STM32F3xx HAL library initialization:
- Configure the Flash prefetch
- Configure the Systick to generate an interrupt each 1 msec
- Set NVIC Group Priority to 4
- Low Level Initialization
*/
HAL_Init();
/* Configure the system clock to 64 MHz */
SystemClock_Config();
/*## Configure peripherals #################################################*/
/* Initialize LEDs on board */
BSP_LED_Init(LED2);
BSP_LED_Init(LED1);
/* Configure User push-button in Interrupt mode */
BSP_PB_Init(BUTTON_USER, BUTTON_MODE_EXTI);
/* Configure the ADCx peripheral */
ADC_Config();
/* Run the ADC calibration in single-ended mode */
if (HAL_ADCEx_Calibration_Start(&AdcHandle, ADC_SINGLE_ENDED) != HAL_OK)
{
/* Calibration Error */
Error_Handler();
}
#if defined(WAVEFORM_VOLTAGE_GENERATION_FOR_TEST)
/* Configure the DAC peripheral and generate a constant voltage of Vdda/2. */
WaveformVoltageGenerationForTest_Config();
#endif /* WAVEFORM_VOLTAGE_GENERATION_FOR_TEST */
/*## Enable peripherals ####################################################*/
/*## Start ADC conversions #################################################*/
/* Start ADC conversion on regular group with transfer by DMA */
if (HAL_ADC_Start_DMA(&AdcHandle,
(uint32_t *)aADCxConvertedValues,
ADCCONVERTEDVALUES_BUFFER_SIZE
) != HAL_OK)
{
/* Start Error */
Error_Handler();
}
/* Infinite loop */
while (1)
{
/* Wait for event on push button to perform following actions */
while ((ubUserButtonClickEvent) == RESET)
{
}
/* Reset variable for next loop iteration */
ubUserButtonClickEvent = RESET;
#if defined(WAVEFORM_VOLTAGE_GENERATION_FOR_TEST)
/* Modifies the voltage level incrementally from 0V to Vdda at each call. */
/* Circular waveform of ramp: When the maximum level is reaches, */
/* restart from 0V. */
WaveformVoltageGenerationForTest_Update();
#endif /* WAVEFORM_VOLTAGE_GENERATION_FOR_TEST */
/* Start ADC conversion */
/* Since sequencer is enabled in discontinuous mode, this will perform */
/* the conversion of the next rank in sequencer. */
/* Note: For this example, conversion is triggered by software start, */
/* therefore "HAL_ADC_Start()" must be called for each conversion. */
/* Since DMA transfer has been initiated previously by function */
/* "HAL_ADC_Start_DMA()", this function will keep DMA transfer */
/* active. */
if (HAL_ADC_Start(&AdcHandle) != HAL_OK)
{
Error_Handler();
}
/* Wait for conversion completion */
/* Note: A fixed wait time of 1ms is used for the purpose of this */
/* example: ADC conversions are decomposed between each rank */
/* of the ADC sequencer. */
/* Function "HAL_ADC_PollForConversion(&AdcHandle, 1)" could be */
/* used, instead of wait time, but with a different configuration */
/* (this function cannot be used if ADC configured in DMA mode */
/* and polling for end of each conversion): a possible */
/* configuration is ADC polling for the entire sequence (ADC init */
/* parameter "EOCSelection" set to ADC_EOC_SEQ_CONV) (this also */
/* induces that ADC discontinuous mode must be disabled). */
HAL_Delay(1);
/* Turn-on/off LED1 in function of ADC sequencer status */
/* - Turn-off if sequencer has not yet converted all ranks */
/* - Turn-on if sequencer has converted all ranks */
if (ubSequenceCompleted == RESET)
{
BSP_LED_Off(LED1);
}
else
{
BSP_LED_On(LED1);
/* Computation of ADC conversions raw data to physical values */
/* Note: ADC results are transferred into array "aADCxConvertedValues" */
/* in the order of their rank in ADC sequencer. */
uhADCChannelToDAC_mVolt = COMPUTATION_DIGITAL_12BITS_TO_VOLTAGE(aADCxConvertedValues[0]);
uhVrefInt_mVolt = COMPUTATION_DIGITAL_12BITS_TO_VOLTAGE(aADCxConvertedValues[1]);
wTemperature_DegreeCelsius = COMPUTATION_TEMPERATURE_STD_PARAMS_AVGSLOPE_V25(aADCxConvertedValues[2]);
/* Reset variable for next loop iteration */
ubSequenceCompleted = RESET;
}
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSI)
* SYSCLK(Hz) = 64000000
* HCLK(Hz) = 64000000
* AHB Prescaler = 1
* APB1 Prescaler = 2
* APB2 Prescaler = 1
* HSI Frequency(Hz) = 8000000
* PREDIV = RCC_PREDIV_DIV2 (2)
* PLLMUL = RCC_PLL_MUL16 (16)
* Flash Latency(WS) = 2
* @param None
* @retval None
*/
void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
/* HSI Oscillator already ON after system reset, activate PLL with HSI as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_NONE;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PREDIV = RCC_PREDIV_DIV2;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct)!= HAL_OK)
{
/* Initialization Error */
while(1);
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2)!= HAL_OK)
{
/* Initialization Error */
while(1);
}
}
/**
* @brief ADC configuration
* @param None
* @retval None
*/
static void ADC_Config(void)
{
ADC_ChannelConfTypeDef sConfig;
/* Configuration of AdcHandle init structure: ADC parameters and regular group */
AdcHandle.Instance = ADCx;
if (HAL_ADC_DeInit(&AdcHandle) != HAL_OK)
{
/* ADC initialization error */
Error_Handler();
}
AdcHandle.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
AdcHandle.Init.Resolution = ADC_RESOLUTION_12B;
AdcHandle.Init.DataAlign = ADC_DATAALIGN_RIGHT;
AdcHandle.Init.ScanConvMode = ADC_SCAN_ENABLE; /* Sequencer enabled (ADC conversion on several channels, successively, following settings below) */
AdcHandle.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
AdcHandle.Init.LowPowerAutoWait = DISABLE;
AdcHandle.Init.ContinuousConvMode = DISABLE; /* Continuous mode disabled to have only 1 rank converted at each conversion trig, and because discontinuous mode is enabled */
AdcHandle.Init.NbrOfConversion = 3; /* Sequencer of regular group will convert the 3 first ranks: rank1, rank2, rank3 */
AdcHandle.Init.DiscontinuousConvMode = ENABLE; /* Sequencer of regular group will convert the sequence in several sub-divided sequences */
AdcHandle.Init.NbrOfDiscConversion = 1; /* Sequencer of regular group will convert ranks one by one, at each conversion trig */
AdcHandle.Init.ExternalTrigConv = ADC_SOFTWARE_START; /* Trig of conversion start done manually by software, without external event */
AdcHandle.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
AdcHandle.Init.DMAContinuousRequests = ENABLE; /* ADC-DMA continuous requests to match with DMA configured in circular mode */
AdcHandle.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
if (HAL_ADC_Init(&AdcHandle) != HAL_OK)
{
/* ADC initialization error */
Error_Handler();
}
/* Configuration of channel on ADCx regular group on sequencer rank 1 */
/* Note: Considering IT occurring after each ADC conversion (IT by DMA end */
/* of transfer), select sampling time and ADC clock with sufficient */
/* duration to not create an overhead situation in IRQHandler. */
/* Note: Set long sampling time due to internal channels (VrefInt, */
/* temperature sensor) constraints. */
/* For example, sampling time of temperature sensor must be higher */
/* than 2.2us. Refer to device datasheet for min/typ/max values. */
sConfig.Channel = ADCx_CHANNELa;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_181CYCLES_5;
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.Offset = 0;
if (HAL_ADC_ConfigChannel(&AdcHandle, &sConfig) != HAL_OK)
{
/* Channel Configuration Error */
Error_Handler();
}
/* Configuration of channel on ADCx regular group on sequencer rank 2 */
/* Replicate previous rank settings, change only channel and rank */
sConfig.Channel = ADC_CHANNEL_VREFINT;
sConfig.Rank = ADC_REGULAR_RANK_2;
if (HAL_ADC_ConfigChannel(&AdcHandle, &sConfig) != HAL_OK)
{
/* Channel Configuration Error */
Error_Handler();
}
/* Configuration of channel on ADCx regular group on sequencer rank 3 */
/* Replicate previous rank settings, change only channel and rank */
sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
sConfig.Rank = ADC_REGULAR_RANK_3;
if (HAL_ADC_ConfigChannel(&AdcHandle, &sConfig) != HAL_OK)
{
/* Channel Configuration Error */
Error_Handler();
}
}
#if defined(WAVEFORM_VOLTAGE_GENERATION_FOR_TEST)
/**
* @brief For this example, generate a waveform voltage on a spare DAC
* channel, so user has just to connect a wire between DAC channel
* (pin PA.01) and ADC channel (pin PA.01) to run this example.
* (this prevents the user from resorting to an external signal generator)
* This function configures the DAC and generates a constant voltage of Vdda/2.
* To modify the voltage level, use function "WaveformVoltageGenerationForTest_Update"
* @param None
* @retval None
*/
static void WaveformVoltageGenerationForTest_Config(void)
{
static DAC_ChannelConfTypeDef sConfig;
/*## Configure peripherals #################################################*/
/* Configuration of DACx peripheral */
DacHandle.Instance = DACx;
if (HAL_DAC_Init(&DacHandle) != HAL_OK)
{
/* DAC initialization error */
Error_Handler();
}
/* Configuration of DAC channel */
sConfig.DAC_Trigger = DAC_TRIGGER_NONE;
sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
if (HAL_DAC_ConfigChannel(&DacHandle, &sConfig, DACx_CHANNEL_TO_ADCx_CHANNELa) != HAL_OK)
{
/* Channel configuration error */
Error_Handler();
}
/*## Enable peripherals ####################################################*/
/* Set DAC Channel data register: channel corresponding to ADC channel CHANNELa */
/* Set DAC output to 1/2 of full range (4095 <=> Vdda=3.3V): 2048 <=> 1.65V */
if (HAL_DAC_SetValue(&DacHandle, DACx_CHANNEL_TO_ADCx_CHANNELa, DAC_ALIGN_12B_R, RANGE_12BITS/2) != HAL_OK)
{
/* Setting value Error */
Error_Handler();
}
/* Enable DAC Channel: channel corresponding to ADC channel CHANNELa */
if (HAL_DAC_Start(&DacHandle, DACx_CHANNEL_TO_ADCx_CHANNELa) != HAL_OK)
{
/* Start Error */
Error_Handler();
}
}
/**
* @brief For this example, generate a waveform voltage on a spare DAC
* channel, so user has just to connect a wire between DAC channel
* (pin PA.01) and ADC channel (pin PA.01) to run this example.
* (this prevents the user from resorting to an external signal generator)
* This function modifies the voltage level from 0V to Vdda in 4 steps,
* incrementally at each function call.
* Circular waveform of ramp: When the maximum level is reaches,
* restart from 0V.
* @param None
* @retval None
*/
static void WaveformVoltageGenerationForTest_Update(void)
{
static uint8_t ub_dac_steps_count = 0; /* Count number of clicks: Incremented after User Button interrupt */
/* Set DAC voltage on channel corresponding to ADCx_CHANNELa */
/* in function of user button clicks count. */
/* Set DAC output on 5 voltage levels, successively to: */
/* - minimum of full range (0 <=> ground 0V) */
/* - 1/4 of full range (4095 <=> Vdda=3.3V): 1023 <=> 0.825V */
/* - 1/2 of full range (4095 <=> Vdda=3.3V): 2048 <=> 1.65V */
/* - 3/4 of full range (4095 <=> Vdda=3.3V): 3071 <=> 2.475V */
/* - maximum of full range (4095 <=> Vdda=3.3V) */
if (HAL_DAC_SetValue(&DacHandle,
DACx_CHANNEL_TO_ADCx_CHANNELa,
DAC_ALIGN_12B_R,
((RANGE_12BITS * ub_dac_steps_count) / 4)
) != HAL_OK)
{
/* Start Error */
Error_Handler();
}
/* Wait for voltage settling time */
HAL_Delay(1);
/* Manage ub_dac_steps_count to increment it in 4 steps and circularly. */
if (ub_dac_steps_count < 4)
{
ub_dac_steps_count++;
}
else
{
ub_dac_steps_count = 0;
}
}
#endif /* WAVEFORM_VOLTAGE_GENERATION_FOR_TEST */
/**
* @brief EXTI line detection callbacks
* @param GPIO_Pin: Specifies the pins connected EXTI line
* @retval None
*/
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
if (GPIO_Pin == USER_BUTTON_PIN)
{
/* Set variable to report push button event to main program */
ubUserButtonClickEvent = SET;
}
}
/**
* @brief Conversion complete callback in non blocking mode
* @param AdcHandle : ADC handle
* @note This example shows a simple way to report end of conversion
* and get conversion result. You can add your own implementation.
* @retval None
*/
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *AdcHandle)
{
/* Report to main program that ADC sequencer has reached its end */
ubSequenceCompleted = SET;
}
/**
* @brief Conversion DMA half-transfer callback in non blocking mode
* @param hadc: ADC handle
* @retval None
*/
void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc)
{
}
/**
* @brief ADC error callback in non blocking mode
* (ADC conversion with interruption or transfer by DMA)
* @param hadc: ADC handle
* @retval None
*/
void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc)
{
/* In case of ADC error, call main error handler */
Error_Handler();
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* User may add here some code to deal with a potential error */
/* In case of error, LED2 is toggling at a frequency of 1Hz */
while(1)
{
/* Toggle LED2 */
BSP_LED_Toggle(LED2);
HAL_Delay(500);
}
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(char *file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/