/** ****************************************************************************** * @file ADC/ADC_Sequencer/Src/main.c * @author MCD Application Team * @brief This example provides a short description of how to use the ADC * peripheral with sequencer, to convert several channels. * Channels converted are 1 channel on external pin and 2 internal * channels (VrefInt and temperature sensor). * Moreover, voltage and temperature are then computed. ****************************************************************************** * @attention * *

© COPYRIGHT(c) 2016 STMicroelectronics

* * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F3xx_HAL_Examples * @{ */ /** @addtogroup ADC_Sequencer * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ #define VDDA_APPLI ((uint32_t) 3300) /* Value of analog voltage supply Vdda (unit: mV) */ #define RANGE_12BITS ((uint32_t) 4095) /* Max digital value with a full range of 12 bits */ /* ADC parameters */ #define ADCCONVERTEDVALUES_BUFFER_SIZE ((uint32_t) 3) /* Size of array containing ADC converted values: set to ADC sequencer number of ranks converted, to have a rank in each address */ /* Internal temperature sensor: constants data used for indicative values in */ /* this example. Refer to device datasheet for min/typ/max values. */ /* For more accurate values, device should be calibrated on offset and slope */ /* for application temperature range. */ #define INTERNAL_TEMPSENSOR_V25 ((int32_t)1430) /* Internal temperature sensor, parameter V25 (unit: mV). Refer to device datasheet for min/typ/max values. */ #define INTERNAL_TEMPSENSOR_AVGSLOPE ((int32_t)4300) /* Internal temperature sensor, parameter Avg_Slope (unit: uV/DegCelsius). Refer to device datasheet for min/typ/max values. */ #define TEMP30_CAL_ADDR ((uint16_t*) ((uint32_t)0x1FFFF7B8)) /* Internal temperature sensor, parameter TS_CAL1: TS ADC raw data acquired at a temperature of 110 DegC (+-5 DegC) */ #define TEMP110_CAL_ADDR ((uint16_t*) ((uint32_t)0x1FFFF7C2)) /* Internal temperature sensor, parameter TS_CAL2: TS ADC raw data acquired at a temperature of 30 DegC (+-5 DegC) */ #define VDDA_TEMP_CAL ((uint32_t) 3300) /* Vdda value with which temperature sensor has been calibrated in production (+-10 mV). */ /* Internal voltage reference */ #define VREFINT_CAL ((uint16_t*) ((uint32_t)0x1FFFF7BA)) /* Internal temperature sensor, parameter VREFINT_CAL: Raw data acquired at a temperature of 30 DegC (+-5 DegC), VDDA = 3.3 V (+-10 mV). */ /* This calibration parameter is intended to calculate the actual VDDA from Vrefint ADC measurement. */ /* Private macro -------------------------------------------------------------*/ /** * @brief Computation of temperature (unit: degree Celsius) from the internal * temperature sensor measurement by ADC. * Computation is using temperature sensor calibration values done * in production. * Computation formula: * Temperature = (TS_ADC_DATA - TS_CAL1) * (110degC - 30degC) * / (TS_CAL2 - TS_CAL1) + 30degC * with TS_ADC_DATA = temperature sensor raw data measured by ADC * Avg_Slope = (TS_CAL2 - TS_CAL1) / (110 - 30) * TS_CAL1 = TS_ADC_DATA @30degC (calibrated in factory) * TS_CAL2 = TS_ADC_DATA @110degC (calibrated in factory) * Calculation validity conditioned to settings: * - ADC resolution 12 bits (need to scale conversion value * if using a different resolution). * - Power supply of analog voltage set to literal VDDA_APPLI * (need to scale value if using a different value of analog * voltage supply). * @param TS_ADC_DATA: Temperature sensor digital value measured by ADC * @retval None */ #define COMPUTATION_TEMPERATURE_TEMP30_TEMP110(TS_ADC_DATA) \ (((( ((int32_t)((TS_ADC_DATA * VDDA_APPLI) / VDDA_TEMP_CAL) \ - (int32_t) *TEMP30_CAL_ADDR) \ ) * (int32_t)(110 - 30) \ ) / (int32_t)(*TEMP110_CAL_ADDR - *TEMP30_CAL_ADDR) \ ) + 30 \ ) /** * @brief Computation of temperature (unit: degree Celsius) from the internal * temperature sensor measurement by ADC. * Computation is using temperature sensor standard parameters (refer * to device datasheet). * Computation formula: * Temperature = (VTS - V25)/Avg_Slope + 25 * with VTS = temperature sensor voltage * Avg_Slope = temperature sensor slope (unit: uV/DegCelsius) * V25 = temperature sensor @25degC and Vdda defined at VDDA_TEMP_CAL (unit: mV) * Calculation validity conditioned to settings: * - ADC resolution 12 bits (need to scale value if using a different * resolution). * - Power supply of analog voltage set to literal VDDA_APPLI * (need to scale value if using a different value of analog * voltage supply). * @param TS_ADC_DATA: Temperature sensor digital value measured by ADC * @retval None */ #define COMPUTATION_TEMPERATURE_STD_PARAMS_AVGSLOPE_V25(TS_ADC_DATA) \ ((( ((int32_t)((INTERNAL_TEMPSENSOR_V25 * VDDA_TEMP_CAL) / VDDA_APPLI) \ - (int32_t)(((TS_ADC_DATA) * VDDA_APPLI) / RANGE_12BITS) \ ) * 1000 \ ) / INTERNAL_TEMPSENSOR_AVGSLOPE \ ) + 25 \ ) /** * @brief Computation of voltage (unit: mV) from ADC measurement digital * value on range 12 bits. * Calculation validity conditioned to settings: * - ADC resolution 12 bits (need to scale value if using a different * resolution). * - Power supply of analog voltage Vdda 3.3V (need to scale value * if using a different analog voltage supply value). * @param ADC_DATA: Digital value measured by ADC * @retval None */ #define COMPUTATION_DIGITAL_12BITS_TO_VOLTAGE(ADC_DATA) \ ( ((ADC_DATA) * VDDA_APPLI) / RANGE_12BITS) /* Private variables ---------------------------------------------------------*/ /* Peripherals handlers declaration */ /* ADC handler declaration */ ADC_HandleTypeDef AdcHandle; #if defined(WAVEFORM_VOLTAGE_GENERATION_FOR_TEST) /* DAC handler declaration */ DAC_HandleTypeDef DacHandle; /* DAC used for waveform voltage generation for test */ #endif /* WAVEFORM_VOLTAGE_GENERATION_FOR_TEST */ /* Variable containing ADC conversions results */ __IO uint16_t aADCxConvertedValues[ADCCONVERTEDVALUES_BUFFER_SIZE]; /* Variables for ADC conversions results computation to physical values */ uint16_t uhADCChannelToDAC_mVolt = 0; uint16_t uhVrefInt_mVolt = 0; int32_t wTemperature_DegreeCelsius = 0; /* Variables to manage push button on board: interface between ExtLine interruption and main program */ uint8_t ubUserButtonClickCount = 0; /* Count number of clicks: Incremented after User Button interrupt */ __IO uint8_t ubUserButtonClickEvent = RESET; /* Event detection: Set after User Button interrupt */ /* Variable to report ADC sequencer status */ uint8_t ubSequenceCompleted = RESET; /* Set when all ranks of the sequence have been converted */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void Error_Handler(void); static void ADC_Config(void); #if defined(WAVEFORM_VOLTAGE_GENERATION_FOR_TEST) static void WaveformVoltageGenerationForTest_Config(void); static void WaveformVoltageGenerationForTest_Update(void); #endif /* WAVEFORM_VOLTAGE_GENERATION_FOR_TEST */ /* Private functions ---------------------------------------------------------*/ /** * @brief Main program. * @param None * @retval None */ int main(void) { /* STM32F3xx HAL library initialization: - Configure the Flash prefetch - Configure the Systick to generate an interrupt each 1 msec - Set NVIC Group Priority to 4 - Low Level Initialization */ HAL_Init(); /* Configure the system clock to 64 MHz */ SystemClock_Config(); /*## Configure peripherals #################################################*/ /* Initialize LEDs on board */ BSP_LED_Init(LED2); BSP_LED_Init(LED1); /* Configure User push-button in Interrupt mode */ BSP_PB_Init(BUTTON_USER, BUTTON_MODE_EXTI); /* Configure the ADCx peripheral */ ADC_Config(); /* Run the ADC calibration in single-ended mode */ if (HAL_ADCEx_Calibration_Start(&AdcHandle, ADC_SINGLE_ENDED) != HAL_OK) { /* Calibration Error */ Error_Handler(); } #if defined(WAVEFORM_VOLTAGE_GENERATION_FOR_TEST) /* Configure the DAC peripheral and generate a constant voltage of Vdda/2. */ WaveformVoltageGenerationForTest_Config(); #endif /* WAVEFORM_VOLTAGE_GENERATION_FOR_TEST */ /*## Enable peripherals ####################################################*/ /*## Start ADC conversions #################################################*/ /* Start ADC conversion on regular group with transfer by DMA */ if (HAL_ADC_Start_DMA(&AdcHandle, (uint32_t *)aADCxConvertedValues, ADCCONVERTEDVALUES_BUFFER_SIZE ) != HAL_OK) { /* Start Error */ Error_Handler(); } /* Infinite loop */ while (1) { /* Wait for event on push button to perform following actions */ while ((ubUserButtonClickEvent) == RESET) { } /* Reset variable for next loop iteration */ ubUserButtonClickEvent = RESET; #if defined(WAVEFORM_VOLTAGE_GENERATION_FOR_TEST) /* Modifies the voltage level incrementally from 0V to Vdda at each call. */ /* Circular waveform of ramp: When the maximum level is reaches, */ /* restart from 0V. */ WaveformVoltageGenerationForTest_Update(); #endif /* WAVEFORM_VOLTAGE_GENERATION_FOR_TEST */ /* Start ADC conversion */ /* Since sequencer is enabled in discontinuous mode, this will perform */ /* the conversion of the next rank in sequencer. */ /* Note: For this example, conversion is triggered by software start, */ /* therefore "HAL_ADC_Start()" must be called for each conversion. */ /* Since DMA transfer has been initiated previously by function */ /* "HAL_ADC_Start_DMA()", this function will keep DMA transfer */ /* active. */ if (HAL_ADC_Start(&AdcHandle) != HAL_OK) { Error_Handler(); } /* Wait for conversion completion */ /* Note: A fixed wait time of 1ms is used for the purpose of this */ /* example: ADC conversions are decomposed between each rank */ /* of the ADC sequencer. */ /* Function "HAL_ADC_PollForConversion(&AdcHandle, 1)" could be */ /* used, instead of wait time, but with a different configuration */ /* (this function cannot be used if ADC configured in DMA mode */ /* and polling for end of each conversion): a possible */ /* configuration is ADC polling for the entire sequence (ADC init */ /* parameter "EOCSelection" set to ADC_EOC_SEQ_CONV) (this also */ /* induces that ADC discontinuous mode must be disabled). */ HAL_Delay(1); /* Turn-on/off LED1 in function of ADC sequencer status */ /* - Turn-off if sequencer has not yet converted all ranks */ /* - Turn-on if sequencer has converted all ranks */ if (ubSequenceCompleted == RESET) { BSP_LED_Off(LED1); } else { BSP_LED_On(LED1); /* Computation of ADC conversions raw data to physical values */ /* Note: ADC results are transferred into array "aADCxConvertedValues" */ /* in the order of their rank in ADC sequencer. */ uhADCChannelToDAC_mVolt = COMPUTATION_DIGITAL_12BITS_TO_VOLTAGE(aADCxConvertedValues[0]); uhVrefInt_mVolt = COMPUTATION_DIGITAL_12BITS_TO_VOLTAGE(aADCxConvertedValues[1]); wTemperature_DegreeCelsius = COMPUTATION_TEMPERATURE_STD_PARAMS_AVGSLOPE_V25(aADCxConvertedValues[2]); /* Reset variable for next loop iteration */ ubSequenceCompleted = RESET; } } } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSI) * SYSCLK(Hz) = 64000000 * HCLK(Hz) = 64000000 * AHB Prescaler = 1 * APB1 Prescaler = 2 * APB2 Prescaler = 1 * HSI Frequency(Hz) = 8000000 * PREDIV = RCC_PREDIV_DIV2 (2) * PLLMUL = RCC_PLL_MUL16 (16) * Flash Latency(WS) = 2 * @param None * @retval None */ void SystemClock_Config(void) { RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct; /* HSI Oscillator already ON after system reset, activate PLL with HSI as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_NONE; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PREDIV = RCC_PREDIV_DIV2; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; if (HAL_RCC_OscConfig(&RCC_OscInitStruct)!= HAL_OK) { /* Initialization Error */ while(1); } /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2)!= HAL_OK) { /* Initialization Error */ while(1); } } /** * @brief ADC configuration * @param None * @retval None */ static void ADC_Config(void) { ADC_ChannelConfTypeDef sConfig; /* Configuration of AdcHandle init structure: ADC parameters and regular group */ AdcHandle.Instance = ADCx; if (HAL_ADC_DeInit(&AdcHandle) != HAL_OK) { /* ADC initialization error */ Error_Handler(); } AdcHandle.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1; AdcHandle.Init.Resolution = ADC_RESOLUTION_12B; AdcHandle.Init.DataAlign = ADC_DATAALIGN_RIGHT; AdcHandle.Init.ScanConvMode = ADC_SCAN_ENABLE; /* Sequencer enabled (ADC conversion on several channels, successively, following settings below) */ AdcHandle.Init.EOCSelection = ADC_EOC_SINGLE_CONV; AdcHandle.Init.LowPowerAutoWait = DISABLE; AdcHandle.Init.ContinuousConvMode = DISABLE; /* Continuous mode disabled to have only 1 rank converted at each conversion trig, and because discontinuous mode is enabled */ AdcHandle.Init.NbrOfConversion = 3; /* Sequencer of regular group will convert the 3 first ranks: rank1, rank2, rank3 */ AdcHandle.Init.DiscontinuousConvMode = ENABLE; /* Sequencer of regular group will convert the sequence in several sub-divided sequences */ AdcHandle.Init.NbrOfDiscConversion = 1; /* Sequencer of regular group will convert ranks one by one, at each conversion trig */ AdcHandle.Init.ExternalTrigConv = ADC_SOFTWARE_START; /* Trig of conversion start done manually by software, without external event */ AdcHandle.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; AdcHandle.Init.DMAContinuousRequests = ENABLE; /* ADC-DMA continuous requests to match with DMA configured in circular mode */ AdcHandle.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN; if (HAL_ADC_Init(&AdcHandle) != HAL_OK) { /* ADC initialization error */ Error_Handler(); } /* Configuration of channel on ADCx regular group on sequencer rank 1 */ /* Note: Considering IT occurring after each ADC conversion (IT by DMA end */ /* of transfer), select sampling time and ADC clock with sufficient */ /* duration to not create an overhead situation in IRQHandler. */ /* Note: Set long sampling time due to internal channels (VrefInt, */ /* temperature sensor) constraints. */ /* For example, sampling time of temperature sensor must be higher */ /* than 2.2us. Refer to device datasheet for min/typ/max values. */ sConfig.Channel = ADCx_CHANNELa; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLETIME_181CYCLES_5; sConfig.SingleDiff = ADC_SINGLE_ENDED; sConfig.OffsetNumber = ADC_OFFSET_NONE; sConfig.Offset = 0; if (HAL_ADC_ConfigChannel(&AdcHandle, &sConfig) != HAL_OK) { /* Channel Configuration Error */ Error_Handler(); } /* Configuration of channel on ADCx regular group on sequencer rank 2 */ /* Replicate previous rank settings, change only channel and rank */ sConfig.Channel = ADC_CHANNEL_VREFINT; sConfig.Rank = ADC_REGULAR_RANK_2; if (HAL_ADC_ConfigChannel(&AdcHandle, &sConfig) != HAL_OK) { /* Channel Configuration Error */ Error_Handler(); } /* Configuration of channel on ADCx regular group on sequencer rank 3 */ /* Replicate previous rank settings, change only channel and rank */ sConfig.Channel = ADC_CHANNEL_TEMPSENSOR; sConfig.Rank = ADC_REGULAR_RANK_3; if (HAL_ADC_ConfigChannel(&AdcHandle, &sConfig) != HAL_OK) { /* Channel Configuration Error */ Error_Handler(); } } #if defined(WAVEFORM_VOLTAGE_GENERATION_FOR_TEST) /** * @brief For this example, generate a waveform voltage on a spare DAC * channel, so user has just to connect a wire between DAC channel * (pin PA.01) and ADC channel (pin PA.01) to run this example. * (this prevents the user from resorting to an external signal generator) * This function configures the DAC and generates a constant voltage of Vdda/2. * To modify the voltage level, use function "WaveformVoltageGenerationForTest_Update" * @param None * @retval None */ static void WaveformVoltageGenerationForTest_Config(void) { static DAC_ChannelConfTypeDef sConfig; /*## Configure peripherals #################################################*/ /* Configuration of DACx peripheral */ DacHandle.Instance = DACx; if (HAL_DAC_Init(&DacHandle) != HAL_OK) { /* DAC initialization error */ Error_Handler(); } /* Configuration of DAC channel */ sConfig.DAC_Trigger = DAC_TRIGGER_NONE; sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; if (HAL_DAC_ConfigChannel(&DacHandle, &sConfig, DACx_CHANNEL_TO_ADCx_CHANNELa) != HAL_OK) { /* Channel configuration error */ Error_Handler(); } /*## Enable peripherals ####################################################*/ /* Set DAC Channel data register: channel corresponding to ADC channel CHANNELa */ /* Set DAC output to 1/2 of full range (4095 <=> Vdda=3.3V): 2048 <=> 1.65V */ if (HAL_DAC_SetValue(&DacHandle, DACx_CHANNEL_TO_ADCx_CHANNELa, DAC_ALIGN_12B_R, RANGE_12BITS/2) != HAL_OK) { /* Setting value Error */ Error_Handler(); } /* Enable DAC Channel: channel corresponding to ADC channel CHANNELa */ if (HAL_DAC_Start(&DacHandle, DACx_CHANNEL_TO_ADCx_CHANNELa) != HAL_OK) { /* Start Error */ Error_Handler(); } } /** * @brief For this example, generate a waveform voltage on a spare DAC * channel, so user has just to connect a wire between DAC channel * (pin PA.01) and ADC channel (pin PA.01) to run this example. * (this prevents the user from resorting to an external signal generator) * This function modifies the voltage level from 0V to Vdda in 4 steps, * incrementally at each function call. * Circular waveform of ramp: When the maximum level is reaches, * restart from 0V. * @param None * @retval None */ static void WaveformVoltageGenerationForTest_Update(void) { static uint8_t ub_dac_steps_count = 0; /* Count number of clicks: Incremented after User Button interrupt */ /* Set DAC voltage on channel corresponding to ADCx_CHANNELa */ /* in function of user button clicks count. */ /* Set DAC output on 5 voltage levels, successively to: */ /* - minimum of full range (0 <=> ground 0V) */ /* - 1/4 of full range (4095 <=> Vdda=3.3V): 1023 <=> 0.825V */ /* - 1/2 of full range (4095 <=> Vdda=3.3V): 2048 <=> 1.65V */ /* - 3/4 of full range (4095 <=> Vdda=3.3V): 3071 <=> 2.475V */ /* - maximum of full range (4095 <=> Vdda=3.3V) */ if (HAL_DAC_SetValue(&DacHandle, DACx_CHANNEL_TO_ADCx_CHANNELa, DAC_ALIGN_12B_R, ((RANGE_12BITS * ub_dac_steps_count) / 4) ) != HAL_OK) { /* Start Error */ Error_Handler(); } /* Wait for voltage settling time */ HAL_Delay(1); /* Manage ub_dac_steps_count to increment it in 4 steps and circularly. */ if (ub_dac_steps_count < 4) { ub_dac_steps_count++; } else { ub_dac_steps_count = 0; } } #endif /* WAVEFORM_VOLTAGE_GENERATION_FOR_TEST */ /** * @brief EXTI line detection callbacks * @param GPIO_Pin: Specifies the pins connected EXTI line * @retval None */ void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) { if (GPIO_Pin == USER_BUTTON_PIN) { /* Set variable to report push button event to main program */ ubUserButtonClickEvent = SET; } } /** * @brief Conversion complete callback in non blocking mode * @param AdcHandle : ADC handle * @note This example shows a simple way to report end of conversion * and get conversion result. You can add your own implementation. * @retval None */ void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *AdcHandle) { /* Report to main program that ADC sequencer has reached its end */ ubSequenceCompleted = SET; } /** * @brief Conversion DMA half-transfer callback in non blocking mode * @param hadc: ADC handle * @retval None */ void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc) { } /** * @brief ADC error callback in non blocking mode * (ADC conversion with interruption or transfer by DMA) * @param hadc: ADC handle * @retval None */ void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc) { /* In case of ADC error, call main error handler */ Error_Handler(); } /** * @brief This function is executed in case of error occurrence. * @param None * @retval None */ static void Error_Handler(void) { /* User may add here some code to deal with a potential error */ /* In case of error, LED2 is toggling at a frequency of 1Hz */ while(1) { /* Toggle LED2 */ BSP_LED_Toggle(LED2); HAL_Delay(500); } } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(char *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/