5.0 KiB
layout | title | subtitle | description | excerpt | date | author | tags | categories | published | math | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
post | 拉格朗日插值 | 给出拉格朗日多项式插值的推导过程和标准公式。 | 通过简单的推导过程和示例程序演示拉格朗日多项式插值。 | 2022-09-08 12:50:00 | Rick Chan |
|
|
true | true |
Fit N+1 points with an N^{th}
degree polynomial
f(x) = exact function of which only N+1 discrete values are known and used to estab- lish an interpolating or approximating function g(x).
g(x) = approximating or interpolating function. This function will pass through all specified N+1 interpolation points (also referred to as data points or nodes).
The interpolation points or nodes are given as:
$$\begin{gather*} x_0 & f(x_0)\equiv f_0 \ x_1 & f(x_1)\equiv f_1 \ x_2 & f(x_2)\equiv f_2 \ ... \ x_N & f(x_N)\equiv f_N \end{gather*}$$
There exists only one N^{th}
degree polynomial that passes through a given set of N+1 points. It’s form is (expressed as a power series):
g(x)=a_0+a_1x+a_2x^2+a_3x^3+...+a_Nx^N
where a_i=\text{unknown coefficients}
, i=0,N\text{(N+1 coefficients)}
.
No matter how we derive the N^{th}
degree polynomial:
- Fitting power series
- Lagrange interpolating functions
- Newton forward or backward interpolation
The resulting polynomial will always be the same!
Power Series Fitting to Define Lagrange Interpolation
g(x) must match f(x) at the selected data points:
$$\begin{gather*} g(x_0)=f_0 \to a_0+a_1x_0+a_2x_0^2+...+a_Nx_0^N=f_0 \ g(x_1)=f_1 \to a_0+a_1x_1+a_2x_1^2+...+a_Nx_1^N=f_1 \ ... \ g(x_N)=f_N \to a_0+a_1x_N+a_2x_N^2+...+a_Nx_N^N=f_N \ \end{gather*}$$
Solve set of simultaneous equations:
$$\begin{bmatrix} 1 & x_0 & x_0^2 & ... & x_0^N \ 1 & x_1 & x_1^2 & ... & x_1^N \ ... \ 1 & x_N & x_N^2 & ... & x_N^N \end{bmatrix} \begin{bmatrix} a_0 \ a_1 \ ... \ a_N \end{bmatrix} = \begin{bmatrix} f_0 \ f_1 \ ... \ f_N \end{bmatrix}$$
It is relatively computationally costly to solve the coefficients of the interpolating function g(x) (i.e. you need to program a solution to these equations).
Lagrange Interpolation Using Basis Functions
We note that in general:
g(x_i)=f_i
Let
g(x)=\sum_{i=0}^Nf_iV_i(x)
where V_i(x)
polynomial of degree associated with each node such that
$$\begin{equation*} V_i(x_j)\equiv \begin{cases} 0 & i\neq j \ 1 & i= j \end{cases} \end{equation*}$$
For example if we have 5 interpolation points (or nodes)
g(x_3)=f_0V_0(x_3)+f_1V_1(x_3)+f_2V_2(x_3)+f_3V_3(x_3)+f_4V_4(x_3)
Using the definition for V_i(x_j)
:
$$\begin{gather*} V_0(x_3)=0 \ V_1(x_3)=0 \ V_2(x_3)=0 \ V_3(x_3)=1 \ V_4(x_4)=0 \end{gather*}$$
we have:
g(x_3)=f_3
How do we construct V_i(x)
?
- Degree N
- Roots at
x_0,x_1,x_2,...,x_{i-1},...,x_N
(at all nodes exceptx_i
) V_i(x_i)=1
Let W_i(x)=(x-x_0)(x-x_1)(x-x_2)...(x-x_{i+1})...(x-x_N)
- The function
W_i
is such that we do have the required roots, i.e. it equals zeros at nodesx_0,x_1,x_2,...,x_N
except at nodex_i
- Degree of
W_i(x)
is N - However
W_i(x)
in the form presented will not equal to unity atx_i
We normalize W_i(x)
and define the Lagrange basis functions V_i(x)
:
V_i(x)=\frac{(x-x_0)(x-x_1)(x-x_2)...(x-x_{i-1})(x-x_{i+1})...(x-x_N)}{(x_i-x_0)(x_i-x_1)(x_i-x_2)...(x_i-x_{i-1})(x_i-x_{i+1})...(x_i-x_N)}
Now we have V_i(x)
such that V_i(x_i)
equals:
$$\begin{gather*} V_i(x)=\frac{(x_i-x_0)(x_i-x_1)(x_i-x_2)...(x_i-x_{i-1})(1)(x_i-x_{i+1})...(x_i-x_N)}{(x_i-x_0)(x_i-x_1)(x_i-x_2)...(x_i-x_{i-1})(x_i-x_{i+1})...(x_i-x_N)} \ \ \to V_i(x_i)=1 \end{gather*}$$
We alos satisfy V_i(x_j)=0
for i\neq j
e.g.
V_1(x_2)=\frac{(x_2-x_0)(1)(x_2-x_2)(x_2-x_3)...(x_2-x_N)}{(x_1-x_0)(1)(x_1-x_2)(x_1-x_3)...(x_1-x_N)}=0
The general form of the interpolating function g(x) with the specified form of V_i(x)
is:
g(x)=\sum_{i=0}^{N}f_iV_i(x)
- The sum of polynomials of degree N is also polynomial of degree N
- g(x) is equivalent to fitting the power series and computing coefficients
a_0,...,a_N
Lagrange Linear Interpolation Using Basis Functions
Linear Lagrange (N=1) is the simplest form of Lagrange Interpolation:
$$\begin{gather*} g(x)=\sum_{i=0}^{1}f_iV_i(x) \ \to g(x)=f_0V_0(x)+f_1V_1(x) \end{gather*}$$
where
V_0(x)=\frac{(x-x_1)}{(x_0-x_1)}=\frac{(x_1-x)}{(x_1-x_0)}
and
V_1(x)=\frac{(x-x_0)}{(x_1-x_0)}
Example
Given the following data:
$$\begin{gather*} x_0=2 & f_0=1.5 \ x_1=5 & f_1=4.0 \end{gather*}$$
Find the linear interpolating function g(x)
Lagrange basis functions are:
$$\begin{gather*} V_0(x)=\frac{x-5}{-3} \ \ V_1(x)=\frac{x-2}{3} \end{gather*}$$
Interpolating function g(x) is:
g(x)=1.5V_0(x)+4.0V_1(x)