mirror of
https://github.com/sjwhitworth/golearn.git
synced 2025-04-26 13:49:14 +08:00

Moved the function to the cross_validation package. Also modified the shuffling function to run concurrently.
97 lines
3.1 KiB
Go
97 lines
3.1 KiB
Go
package cross_validation
|
||
|
||
import (
|
||
"fmt"
|
||
mat "github.com/gonum/matrix/mat64"
|
||
"math/rand"
|
||
"sync"
|
||
"time"
|
||
)
|
||
|
||
func shuffleMatrix(returnDatasets []*mat.Dense, dataset mat.Matrix, testSize int, seed int64, wg *sync.WaitGroup) {
|
||
numGen := rand.New(rand.NewSource(seed))
|
||
|
||
// We don't want to alter the original dataset.
|
||
shuffledSet := mat.DenseCopyOf(dataset)
|
||
rowCount, colCount := shuffledSet.Dims()
|
||
temp := make([]float64, colCount)
|
||
|
||
// Fisher–Yates shuffle
|
||
for i := 0; i < rowCount; i++ {
|
||
j := numGen.Intn(i+1)
|
||
if j != i {
|
||
// Make a "hard" copy to avoid pointer craziness.
|
||
copy(temp, shuffledSet.RowView(i))
|
||
shuffledSet.SetRow(i, shuffledSet.RowView(j))
|
||
shuffledSet.SetRow(j, temp)
|
||
}
|
||
}
|
||
trainSize := rowCount - testSize
|
||
returnDatasets[0] = mat.NewDense(trainSize, colCount, shuffledSet.RawMatrix().Data[:trainSize*colCount])
|
||
returnDatasets[1] = mat.NewDense(testSize, colCount, shuffledSet.RawMatrix().Data[trainSize*colCount:])
|
||
|
||
wg.Done()
|
||
}
|
||
|
||
// TrainTestSplit splits input DenseMatrix into subsets for testing.
|
||
// The function expects a test size number (int) or percentage (float64), and a random state or nil to get "random" shuffle.
|
||
// It returns a list containing the train-test split and an error status.
|
||
func TrainTestSplit(size interface{}, randomState interface{}, datasets ...*mat.Dense) ([]*mat.Dense, error) {
|
||
// Get number of instances (rows).
|
||
instanceCount, _ := datasets[0].Dims()
|
||
|
||
// Input should be one or two matrices.
|
||
dataCount := len(datasets)
|
||
if dataCount > 2 {
|
||
return nil, fmt.Errorf("Expected 1 or 2 datasets, got %d\n", dataCount)
|
||
}
|
||
|
||
if dataCount == 2 {
|
||
// Test for consistency.
|
||
labelCount, labelFeatures := datasets[1].Dims()
|
||
if labelCount != instanceCount {
|
||
return nil, fmt.Errorf("Data and labels must have the same number of instances")
|
||
} else if labelFeatures != 1 {
|
||
return nil, fmt.Errorf("Label matrix must have single feature")
|
||
}
|
||
}
|
||
|
||
var testSize int
|
||
switch size := size.(type) {
|
||
// If size is an integer, treat it as the test data instance count.
|
||
case int:
|
||
testSize = size
|
||
case float64:
|
||
// If size is a float, treat it as a percentage of the instances to be allocated to the test set.
|
||
testSize = int(float64(instanceCount)*size + 0.5)
|
||
default:
|
||
return nil, fmt.Errorf("Expected a test instance count (int) or percentage (float64)")
|
||
}
|
||
|
||
var randSeed int64
|
||
// Create a deterministic shuffle, or a "random" one based on current time.
|
||
if seed, ok := randomState.(int); ok {
|
||
randSeed = int64(seed)
|
||
} else {
|
||
// Use seconds since epoch as seed
|
||
randSeed = time.Now().Unix()
|
||
}
|
||
|
||
// Wait group for goroutine syncronization.
|
||
wg := new(sync.WaitGroup)
|
||
wg.Add(dataCount)
|
||
|
||
// Return slice will hold training and test data and optional labels matrix.
|
||
returnDatasets := make([]*mat.Dense, 2*dataCount)
|
||
|
||
for i, dataset := range datasets {
|
||
// Send proper returnDataset slice.
|
||
// This is needed so goroutine doesn't mess up the expected return order.
|
||
// Perhaps returning a map is a better solution...
|
||
go shuffleMatrix(returnDatasets[i:i+2], dataset, testSize, randSeed, wg)
|
||
}
|
||
wg.Wait()
|
||
|
||
return returnDatasets, nil
|
||
}
|