1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-04-26 13:49:14 +08:00

Moved to own package and added concurrency support

Moved the function to the cross_validation package. Also modified the
shuffling function to run concurrently.
This commit is contained in:
Nelson Santos 2014-05-03 12:01:38 -04:00
parent 030d9844c6
commit 779ad2842e
2 changed files with 89 additions and 21 deletions

View File

@ -1,20 +1,24 @@
package utilities
package cross_validation
import (
"fmt"
mat "github.com/gonum/matrix/mat64"
"math/rand"
"sync"
"time"
)
func shuffleMatrix(dataset *mat.Dense, numGen *rand.Rand) *mat.Dense {
func shuffleMatrix(returnDatasets []*mat.Dense, dataset mat.Matrix, testSize int, seed int64, wg *sync.WaitGroup) {
numGen := rand.New(rand.NewSource(seed))
// We don't want to alter the original dataset.
shuffledSet := mat.DenseCopyOf(dataset)
rowCount, colCount := shuffledSet.Dims()
temp := make([]float64, colCount)
// FisherYates shuffle
for i := 0; i < rowCount; i++ {
j := numGen.Intn(i + 1)
j := numGen.Intn(i+1)
if j != i {
// Make a "hard" copy to avoid pointer craziness.
copy(temp, shuffledSet.RowView(i))
@ -22,8 +26,11 @@ func shuffleMatrix(dataset *mat.Dense, numGen *rand.Rand) *mat.Dense {
shuffledSet.SetRow(j, temp)
}
}
trainSize := rowCount - testSize
returnDatasets[0] = mat.NewDense(trainSize, colCount, shuffledSet.RawMatrix().Data[:trainSize*colCount])
returnDatasets[1] = mat.NewDense(testSize, colCount, shuffledSet.RawMatrix().Data[trainSize*colCount:])
return shuffledSet
wg.Done()
}
// TrainTestSplit splits input DenseMatrix into subsets for testing.
@ -49,41 +56,41 @@ func TrainTestSplit(size interface{}, randomState interface{}, datasets ...*mat.
}
}
var trainSize, testSize int
var testSize int
switch size := size.(type) {
// If size is an integer, treat it as the test data instance count.
case int:
trainSize = instanceCount - size
testSize = size
case float64:
// If size is a float, treat it as a percentage of the instances to be allocated to the test set.
trainSize = int(float64(instanceCount)*(1-size) + 0.5)
testSize = int(float64(instanceCount)*size + 0.5)
default:
return nil, fmt.Errorf("Expected a test instance count (int) or percentage (float64)")
}
var randSeed int64
// Create a deterministic shuffle, or a "random" one based on current time.
var randSource rand.Source
if seed, ok := randomState.(int); ok {
randSource = rand.NewSource(int64(seed))
randSeed = int64(seed)
} else {
randSource = rand.NewSource(time.Now().Unix())
// Use seconds since epoch as seed
randSeed = time.Now().Unix()
}
numGen := rand.New(randSource)
// Wait group for goroutine syncronization.
wg := new(sync.WaitGroup)
wg.Add(dataCount)
// Return slice will hold training and test data and optional labels matrix.
var returnDatasets []*mat.Dense
returnDatasets := make([]*mat.Dense, 2*dataCount)
for _, dataset := range datasets {
_, featureCount := dataset.Dims()
tempMatrix := shuffleMatrix(dataset, numGen)
// Features count is different on data and labels.
returnDatasets = append(returnDatasets, mat.NewDense(trainSize, featureCount, tempMatrix.RawMatrix().Data[:trainSize*featureCount]))
returnDatasets = append(returnDatasets, mat.NewDense(testSize, featureCount, tempMatrix.RawMatrix().Data[trainSize*featureCount:]))
for i, dataset := range datasets {
// Send proper returnDataset slice.
// This is needed so goroutine doesn't mess up the expected return order.
// Perhaps returning a map is a better solution...
go shuffleMatrix(returnDatasets[i:i+2], dataset, testSize, randSeed, wg)
}
wg.Wait()
return returnDatasets, nil
}

View File

@ -0,0 +1,61 @@
package cross_validation
import (
//. "github.com/smartystreets/goconvey/convey"
mat "github.com/gonum/matrix/mat64"
"math/rand"
"testing"
"time"
)
var (
flatValues, flatLabels []float64
values, labels *mat.Dense
)
func init() {
flatValues = make([]float64, 80)
flatLabels = make([]float64, 20)
for i := 0; i < 80; i++ {
flatValues[i] = float64(i + 1)
// Replaces labels four times per run but who cares.
flatLabels[int(i/4)] = float64(rand.Intn(2))
}
values = mat.NewDense(20, 4, flatValues)
labels = mat.NewDense(20, 1, flatLabels)
}
func TestTrainTrainTestSplit(t *testing.T) {
nolab1, err := TrainTestSplit(4, nil, values)
if err != nil {
t.Error(err)
}
// Make sure the random generator gets a new seed (time).
time.Sleep(time.Second)
nolab2, _ := TrainTestSplit(4, nil, values)
if nolab1[0].Equals(nolab2[0]) {
t.Errorf("Shuffle with different seed returned same matrix")
}
nolab1, _ = TrainTestSplit(4, 1, values)
nolab2, _ = TrainTestSplit(4, 1, values)
// Comparing the determinants does not guarantee uniqueness, but it will do for now.
if !nolab1[0].Equals(nolab2[0]) {
t.Errorf("Shuffle with same seed returned different matrix")
}
// Same thing for data with labels.
lab1, err := TrainTestSplit(0.1, 10, values, labels)
if err != nil {
t.Error(err)
}
lab2, _ := TrainTestSplit(0.1, 10, values, labels)
if !lab1[0].Equals(lab2[0]) {
t.Errorf("Shuffle with same seed returned different determinants")
}
}