1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-04-28 13:48:56 +08:00

17 Commits

Author SHA1 Message Date
Richard Townsend
768d2cd19f meta: tests are almost passing 2017-09-10 16:59:05 +01:00
Richard Townsend
ead76bdd7e I think I'm going to refocus this whole thing 2017-09-09 12:31:32 +01:00
Amit Kumar Gupta
1809a8b358 RandomForest returns error when fitting data with fewer features than the RandomForest plans to use
- BaseClassifier Predict and Fit methods return errors
- go fmt ./...

Conflicts:
	ensemble/randomforest.go
	ensemble/randomforest_test.go
	trees/tree_test.go
2014-08-22 13:39:29 +00:00
Amit Kumar Gupta
21bb2fc9fa Remove redundant import renames 2014-08-22 07:21:24 +00:00
Richard Townsend
47341b2869 base: Cleaned up duplicate Attribute resolution functions 2014-08-03 15:17:20 +01:00
Richard Townsend
3b3b23a221 meta: merge from v2-instances 2014-08-03 15:17:11 +01:00
Niclas Jern
627a5537d3 Comments should be of the form "<Struct> ..." or "<MethodName> ..." 2014-07-18 13:48:28 +03:00
Niclas Jern
daac7a278d Omit unused second value from range statements. 2014-07-18 13:17:19 +03:00
Richard Townsend
4fd88d834f @mish15's re-write of Predict() 2014-05-23 12:19:10 +01:00
Richard Townsend
7a33d2b9b2 Making Fit() more idiomatic 2014-05-20 09:06:59 +01:00
Richard Townsend
61f65e04aa Merge branch 'randomforests-upstream' of github.com:Sentimentron/golearn into randomforests-upstream 2014-05-19 12:59:25 +01:00
Richard Townsend
a6072ac9de Package documentation 2014-05-19 12:59:11 +01:00
Richard Townsend
ab39d0c972 Fixed race conditions 2014-05-18 20:59:46 +01:00
Richard Townsend
45ca6063f1 Not sure if this bagging version is better or not
More more similar to "Attribute bagging:improving accuracy of classifier ensembles by using random feature subsets" (Brill)
2014-05-18 11:49:35 +01:00
Richard Townsend
c516907b13 Passes all the tests 2014-05-17 17:35:10 +01:00
Richard Townsend
cf165695c8 ChiMerge seems to improve accuracy 2014-05-17 16:20:56 +01:00
Richard Townsend
fdb67a4355 Initial work on decision trees
Random Forest has occasional disastrous accuracy:
	 never seen that happen in WEKA
2014-05-14 14:00:22 +01:00