mirror of
https://github.com/sjwhitworth/golearn.git
synced 2025-04-26 13:49:14 +08:00
191 lines
4.9 KiB
Go
191 lines
4.9 KiB
Go
package meta
|
|
|
|
import (
|
|
"fmt"
|
|
base "github.com/sjwhitworth/golearn/base"
|
|
"math/rand"
|
|
"runtime"
|
|
"strings"
|
|
"sync"
|
|
)
|
|
|
|
// BaggedModel trains base.Classifiers on subsets of the original
|
|
// Instances and combine the results through voting
|
|
type BaggedModel struct {
|
|
base.BaseClassifier
|
|
Models []base.Classifier
|
|
RandomFeatures int
|
|
lock sync.Mutex
|
|
selectedAttributes map[int][]base.Attribute
|
|
}
|
|
|
|
// generateTrainingAttrs selects RandomFeatures number of base.Attributes from
|
|
// the provided base.Instances.
|
|
func (b *BaggedModel) generateTrainingAttrs(model int, from *base.Instances) []base.Attribute {
|
|
ret := make([]base.Attribute, 0)
|
|
if b.RandomFeatures == 0 {
|
|
for j := 0; j < from.Cols; j++ {
|
|
attr := from.GetAttr(j)
|
|
ret = append(ret, attr)
|
|
}
|
|
} else {
|
|
for {
|
|
if len(ret) >= b.RandomFeatures {
|
|
break
|
|
}
|
|
attrIndex := rand.Intn(from.Cols)
|
|
if attrIndex == from.ClassIndex {
|
|
continue
|
|
}
|
|
attr := from.GetAttr(attrIndex)
|
|
matched := false
|
|
for _, a := range ret {
|
|
if a.Equals(attr) {
|
|
matched = true
|
|
break
|
|
}
|
|
}
|
|
if !matched {
|
|
ret = append(ret, attr)
|
|
}
|
|
}
|
|
}
|
|
ret = append(ret, from.GetClassAttr())
|
|
b.lock.Lock()
|
|
b.selectedAttributes[model] = ret
|
|
b.lock.Unlock()
|
|
return ret
|
|
}
|
|
|
|
// generatePredictionInstances returns a modified version of the
|
|
// requested base.Instances with only the base.Attributes selected
|
|
// for training the model.
|
|
func (b *BaggedModel) generatePredictionInstances(model int, from *base.Instances) *base.Instances {
|
|
selected := b.selectedAttributes[model]
|
|
return from.SelectAttributes(selected)
|
|
}
|
|
|
|
// generateTrainingInstances generates RandomFeatures number of
|
|
// attributes and returns a modified version of base.Instances
|
|
// for training the model
|
|
func (b *BaggedModel) generateTrainingInstances(model int, from *base.Instances) *base.Instances {
|
|
insts := from.SampleWithReplacement(from.Rows)
|
|
selected := b.generateTrainingAttrs(model, from)
|
|
return insts.SelectAttributes(selected)
|
|
}
|
|
|
|
// AddModel adds a base.Classifier to the current model
|
|
func (b *BaggedModel) AddModel(m base.Classifier) {
|
|
b.Models = append(b.Models, m)
|
|
}
|
|
|
|
// Fit generates and trains each model on a randomised subset of
|
|
// Instances.
|
|
func (b *BaggedModel) Fit(from *base.Instances) {
|
|
var wait sync.WaitGroup
|
|
b.selectedAttributes = make(map[int][]base.Attribute)
|
|
for i, m := range b.Models {
|
|
wait.Add(1)
|
|
go func(c base.Classifier, f *base.Instances, model int) {
|
|
l := b.generateTrainingInstances(model, f)
|
|
c.Fit(l)
|
|
wait.Done()
|
|
}(m, from, i)
|
|
}
|
|
wait.Wait()
|
|
}
|
|
|
|
// Predict gathers predictions from all the classifiers
|
|
// and outputs the most common (majority) class
|
|
//
|
|
// IMPORTANT: in the event of a tie, the first class which
|
|
// achieved the tie value is output.
|
|
func (b *BaggedModel) Predict(from *base.Instances) *base.Instances {
|
|
n := runtime.NumCPU()
|
|
// Channel to receive the results as they come in
|
|
votes := make(chan *base.Instances, n)
|
|
// Count the votes for each class
|
|
voting := make(map[int](map[string]int))
|
|
|
|
// Create a goroutine to collect the votes
|
|
var votingwait sync.WaitGroup
|
|
votingwait.Add(1)
|
|
go func() {
|
|
for {
|
|
incoming, ok := <-votes
|
|
if ok {
|
|
// Step through each prediction
|
|
for j := 0; j < incoming.Rows; j++ {
|
|
// Check if we've seen this class before...
|
|
if _, ok := voting[j]; !ok {
|
|
// If we haven't, create an entry
|
|
voting[j] = make(map[string]int)
|
|
// Continue on the current row
|
|
j--
|
|
continue
|
|
}
|
|
voting[j][incoming.GetClass(j)]++
|
|
}
|
|
} else {
|
|
votingwait.Done()
|
|
break
|
|
}
|
|
}
|
|
}()
|
|
|
|
// Create workers to process the predictions
|
|
processpipe := make(chan int, n)
|
|
var processwait sync.WaitGroup
|
|
for i := 0; i < n; i++ {
|
|
processwait.Add(1)
|
|
go func() {
|
|
for {
|
|
if i, ok := <-processpipe; ok {
|
|
c := b.Models[i]
|
|
l := b.generatePredictionInstances(i, from)
|
|
votes <- c.Predict(l)
|
|
} else {
|
|
processwait.Done()
|
|
break
|
|
}
|
|
}
|
|
}()
|
|
}
|
|
|
|
// Send all the models to the workers for prediction
|
|
for i := range b.Models {
|
|
processpipe <- i
|
|
}
|
|
close(processpipe) // Finished sending models to be predicted
|
|
processwait.Wait() // Predictors all finished processing
|
|
close(votes) // Close the vote channel and allow it to drain
|
|
votingwait.Wait() // All the votes are in
|
|
|
|
// Generate the overall consensus
|
|
ret := from.GeneratePredictionVector()
|
|
for i := range voting {
|
|
maxClass := ""
|
|
maxCount := 0
|
|
// Find the most popular class
|
|
for c := range voting[i] {
|
|
votes := voting[i][c]
|
|
if votes > maxCount {
|
|
maxClass = c
|
|
maxCount = votes
|
|
}
|
|
}
|
|
ret.SetAttrStr(i, 0, maxClass)
|
|
}
|
|
return ret
|
|
}
|
|
|
|
// String returns a human-readable representation of the
|
|
// BaggedModel and everything it contains
|
|
func (b *BaggedModel) String() string {
|
|
children := make([]string, 0)
|
|
for i, m := range b.Models {
|
|
children = append(children, fmt.Sprintf("%d: %s", i, m))
|
|
}
|
|
return fmt.Sprintf("BaggedModel(\n%s)", strings.Join(children, "\n\t"))
|
|
}
|