2022-07-04 11:37:52 +01:00
..
2021-12-14 09:57:38 +01:00
2022-07-04 11:37:52 +01:00
2021-12-14 09:57:38 +01:00
2021-12-14 09:57:38 +01:00
2022-07-04 11:37:52 +01:00
2021-12-14 09:57:38 +01:00

/**
  @page TIM_OnePulse TIM One Pulse example
  
  @verbatim
  ******************************************************************************
  * @file    TIM/TIM_OnePulse/readme.txt 
  * @author  MCD Application Team
  * @brief   Description of the TIM One Pulse example.      
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2016 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  @endverbatim

@par Example Description 

Use of the TIM peripheral to generate a single pulse when 
an external signal rising edge is received on the timer input pin.

Clock setup for TIM4
================================

  TIM4CLK = SystemCoreClock = 216 MHz.
  
  Prescaler = (TIM4CLK /TIM4 counter clock) - 1
  
  The prescaler value is computed in order to have TIM4 counter clock 
  set at 21600000 Hz.
  
  The Autoreload value is 65535 (TIM4->ARR), so the maximum frequency value to 
  trigger the TIM4 input is 21600000/65535 [Hz].
 
Configuration of TIM4 in One Pulse Mode
===================================================
 
  - The external signal is connected to TIM4_CH2 pin (PB.07), 
    and a rising edge on this input is used to trigger the Timer.
  - The One Pulse signal is output on TIM4_CH1 (PB.06).

  The delay value is fixed to:
   - Delay =  CCR1/TIM4 counter clock 
           = 16383 / 21600000 [sec]
           
  The pulse value is fixed to : 
   - Pulse value = (TIM_Period - TIM_Pulse)/TIM4 counter clock  
                 = (65535 - 16383) / 21600000 [sec]

  The one pulse waveform can be displayed using an oscilloscope and it looks
  like this.
  
                               ____
                               |   |
  CH2 _________________________|   |__________________________________________
 
                                             ___________________________
                                            |                           |
  CH1 ______________________________________|                           |_____
                               <---Delay----><------Pulse--------------->
  


@par Keywords

Timers, Output, signals, One Pulse, PWM, Oscilloscope, External signal, Autoreload, Waveform

@Note<74>If the user code size exceeds the DTCM-RAM size or starts from internal cacheable memories (SRAM1 and SRAM2),that is shared between several processors,
 <20><><A0><A0><A0>then it is highly recommended to enable the CPU cache and maintain its coherence at application level.
<0A><><A0><A0><A0><A0>The address and the size of cacheable buffers (shared between CPU and other masters)  must be properly updated to be aligned to cache line size (32 bytes).

@Note It is recommended to enable the cache and maintain its coherence, but depending on the use case
<0A><><A0><A0><A0> It is also possible to configure the MPU as "Write through", to guarantee the write access coherence.
<0A><><A0><A0><A0><A0>In that case, the MPU must be configured as Cacheable/Bufferable/Not Shareable.
<0A><><A0><A0><A0><A0>Even though the user must manage the cache coherence for read accesses.
<0A><><A0><A0><A0><A0>Please refer to the AN4838 <20>Managing memory protection unit (MPU) in STM32 MCUs<55>
<0A><><A0><A0><A0><A0>Please refer to the AN4839 <20>Level 1 cache on STM32F7 Series<65>

@par Directory contents 

  - TIM/TIM_OnePulse/Inc/stm32f7xx_hal_conf.h    HAL configuration file
  - TIM/TIM_OnePulse/Inc/stm32f7xx_it.h          Interrupt handlers header file
  - TIM/TIM_OnePulse/Inc/main.h                  Header for main.c module  
  - TIM/TIM_OnePulse/Src/stm32f7xx_it.c          Interrupt handlers
  - TIM/TIM_OnePulse/Src/main.c                  Main program
  - TIM/TIM_OnePulse/Src/stm32f7xx_hal_msp.c     HAL MSP file
  - TIM/TIM_OnePulse/Src/system_stm32f7xx.c      STM32F7xx system source file


@par Hardware and Software environment

   - This example runs on STM32F756xx/STM32F746xx devices.
   - In this example, the clock is set to 216 MHz.
    
  - This example has been tested with STM327x6G-EVAL board revB and can be
    easily tailored to any other supported device and development board.

  - STM327x6G-EVAL revB Set-up
   - Connect the external signal to the TIM4_CH2 pin (PB.07) ()
   - Connect the TIM4_CH1 pin(PB.06) () to an oscilloscope to monitor the waveform.  

@par How to use it ? 

In order to make the program work, you must do the following :
 - Open your preferred toolchain
 - Rebuild all files: Project->Rebuild all
 - Load project image: Project->Download and Debug
 - Run program: Debug->Go(F5) 


 */