2019-08-05 13:14:59 +01:00

644 lines
22 KiB
C
Raw Blame History

/**
******************************************************************************
* @file I2C/I2C_TwoBoards_RestartAdvComIT/Src/main.c
* @author MCD Application Team
* @brief This sample code shows how to use STM32F7xx I2C HAL API to transmit
* and receive a data buffer with a communication process based on
* IT transfer and with a repeated start condition between the transmit
* and receive process..
* The communication is done using 2 Boards.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#if defined(__GNUC__)
#include <stdio.h> /*rtt*/
#include <stdlib.h> /*rtt*/
#endif
#include "main.h"
/** @addtogroup STM32F4xx_HAL_Examples
* @{
*/
/** @addtogroup I2C_TwoBoards_RestartAdvComIT
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Uncomment this line to use the board as master, if not it is used as slave */
#define MASTER_BOARD
#define I2C_ADDRESS 0x3C
/**
* @brief Defines related to Slave process
*/
#define SLAVE_CHIP_NAME 0
#define SLAVE_CHIP_REVISION 1
#define SLAVE_LAST_INFO SLAVE_CHIP_REVISION
/**
* @brief Defines related to Timeout to keep Leds status
*/
#define LED_STATUS_TIMEOUT 1000 /* 1 Second */
/**
* @brief Defines related to I2C clock speed
*/
#define I2C_TIMING 0x00D00E28 /* (Rise time = 120ns, Fall time = 25ns) */
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* I2C handler declaration */
I2C_HandleTypeDef I2cHandle;
/**
* @brief Variables related to Master process
*/
/* aCommandCode declaration array */
/* [CommandCode][RequestSlaveAnswer] */
/* {CODE, YES/NO} */
const char* aCommandCode[4][4] = {
{"CHIP_NAME", "YES"},
{"CHIP_REVISION", "YES"},
{"LOW_POWER", "NO"},
{"WAKE_UP", "NO"}};
uint8_t* pMasterTransmitBuffer = (uint8_t*)(&aCommandCode[0]);
uint8_t ubMasterNbCommandCode = sizeof(aCommandCode[0][0]);
uint8_t aMasterReceiveBuffer[0xF] = {0};
__IO uint8_t ubMasterNbDataToReceive = sizeof(aMasterReceiveBuffer);
__IO uint8_t ubMasterNbDataToTransmit = 0;
uint8_t ubMasterCommandIndex = 0;
__IO uint8_t ubMasterReceiveIndex = 0;
/**
* @brief Variables related to Slave process
*/
const char* aSlaveInfo[] = {
"STM32F767xx",
"1.2.3"};
uint8_t aSlaveReceiveBuffer[0xF] = {0};
uint8_t* pSlaveTransmitBuffer = 0;
__IO uint8_t ubSlaveNbDataToTransmit = 0;
uint8_t ubSlaveInfoIndex = 0xFF;
__IO uint8_t ubSlaveReceiveIndex = 0;
uint32_t uwTransferDirection = 0;
__IO uint32_t uwTransferInitiated = 0;
__IO uint32_t uwTransferEnded = 0;
/* Private function prototypes -----------------------------------------------*/
static void SystemClock_Config(void);
static void FlushBuffer8(uint8_t* pBuffer1, uint16_t BufferLength);
static void Error_Handler(void);
static void CPU_CACHE_Enable(void);
#if defined(__GNUC__) && defined (MASTER_BOARD)
extern void initialise_monitor_handles(void); /*rtt*/
#endif
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
#if defined(__GNUC__) && defined (MASTER_BOARD)
initialise_monitor_handles(); /*rtt*/
#endif
/* Enable the CPU Cache */
CPU_CACHE_Enable();
/* STM32F7xx HAL library initialization:
- Configure the Flash prefetch, instruction and Data caches
- Systick timer is configured by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
- Set NVIC Group Priority to 4
- Low Level Initialization: global MSP (MCU Support Package) initialization
*/
HAL_Init();
/* Configure the system clock to 216 MHz */
SystemClock_Config();
/* Configure LED1, LED2, and LED3 */
BSP_LED_Init(LED1);
BSP_LED_Init(LED2);
BSP_LED_Init(LED3);
/*##-1- Configure the I2C peripheral ######################################*/
I2cHandle.Instance = I2Cx;
I2cHandle.Init.Timing = I2C_TIMING;
I2cHandle.Init.OwnAddress1 = I2C_ADDRESS;
I2cHandle.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
I2cHandle.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
I2cHandle.Init.OwnAddress2 = 0xFE;
I2cHandle.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
I2cHandle.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if(HAL_I2C_Init(&I2cHandle) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/* Enable Fast Mode Plus FM+ on I2C1 */
HAL_I2CEx_EnableFastModePlus(I2C_FASTMODEPLUS_I2C1);
#ifdef MASTER_BOARD
/* Configure User push-button button */
BSP_PB_Init(BUTTON_USER,BUTTON_MODE_GPIO);
/* Infinite loop */
while (1)
{
/* Wait for User push-button press before starting the Communication */
while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_SET)
{
}
/* Wait for User push-button release before starting the Communication */
while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_RESET)
{
}
/* The board sends the message and expects to receive it back if necessary. */
/* If Master no request a Slave answer, Run master in transmitter mode only. */
if(strncmp(aCommandCode[ubMasterCommandIndex][1], "NO", 2) == 0)
{
/*##-2- Start the transmission process #####################################*/
/* Master prepare and send the transmission buffer ("pMasterTransmitBuffer")
through a "New" communication frame. The communication will be stopped at
the end of transmission process thanks to "I2C_FIRST_AND_LAST_FRAME" option usage. */
pMasterTransmitBuffer = (uint8_t*)(aCommandCode[ubMasterCommandIndex][0]);
ubMasterNbDataToTransmit = strlen((char *)(aCommandCode[ubMasterCommandIndex][0]));
/* Handle I2C events (Master Transmit only) */
do
{
if(HAL_I2C_Master_Seq_Transmit_IT(&I2cHandle, (uint16_t)I2C_ADDRESS, pMasterTransmitBuffer, ubMasterNbDataToTransmit, I2C_FIRST_AND_LAST_FRAME)!= HAL_OK)
{
/* Error_Handler() function is called when error occurs. */
Error_Handler();
}
/*##-3- Wait for the end of the transfer #################################*/
/* Before starting a new communication transfer, you need to check the current
state of the peripheral; if it<69>s busy you need to wait for the end of current
transfer before starting a new one.
For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
{
}
/* When Acknowledge failure occurs (Slave don't acknowledge it's address)
Master restarts communication */
}
while(HAL_I2C_GetError(&I2cHandle) == HAL_I2C_ERROR_AF);
/*##-4- Monitor Status through Terminal I/O ##############################*/
/* Display through external Terminal IO the Command Code acknowledge by Slave device */
printf("Slave goes to %s.\n", (char*)(aCommandCode[ubMasterCommandIndex][0]));
}
/* Else Master request a Slave answer, Run master in transmitter mode then receiver mode. */
else
{
/*##-2- Start the transmission process #####################################*/
/* Master prepare and send the transmission buffer ("pMasterTransmitBuffer")
through a "New" communication frame. The communication will not stopped thanks
to "I2C_FIRST_FRAME" option usage. This will allow to generate a restart condition
after change the I2C peripheral from transmission process to reception process */
pMasterTransmitBuffer = (uint8_t*)(aCommandCode[ubMasterCommandIndex][0]);
ubMasterNbDataToTransmit = strlen((char *)(aCommandCode[ubMasterCommandIndex][0]));
/* Handle I2C events (Master Transmit only) */
do
{
if(HAL_I2C_Master_Seq_Transmit_IT(&I2cHandle, (uint16_t)I2C_ADDRESS, pMasterTransmitBuffer, ubMasterNbDataToTransmit, I2C_FIRST_FRAME)!= HAL_OK)
{
/* Error_Handler() function is called when error occurs. */
Error_Handler();
}
/*##-3- Wait for the end of the transfer #################################*/
/* Before starting a new communication transfer, you need to check the current
state of the peripheral; if it<69>s busy you need to wait for the end of current
transfer before starting a new one.
For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
{
}
/* When Acknowledge failure occurs (Slave don't acknowledge it's address)
Master restarts communication */
}
while(HAL_I2C_GetError(&I2cHandle) == HAL_I2C_ERROR_AF);
/*##-4- Put I2C peripheral in reception process ###########################*/
/* Master generate a restart condition and then change the I2C peripheral
from transmission process to reception process, to retrieve information
data from Slave device. */
do
{
if(HAL_I2C_Master_Seq_Receive_IT(&I2cHandle, (uint16_t)I2C_ADDRESS, aMasterReceiveBuffer, strlen((char *)(aSlaveInfo[ubMasterCommandIndex])), I2C_LAST_FRAME)!= HAL_OK)
{
/* Error_Handler() function is called when error occurs. */
Error_Handler();
}
/*##-5- Wait for the end of the transfer #################################*/
/* Before starting a new communication transfer, you need to check the current
state of the peripheral; if it<69>s busy you need to wait for the end of current
transfer before starting a new one.
For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
{
}
/* When Acknowledge failure occurs (Slave don't acknowledge it's address)
Master restarts communication */
}
while(HAL_I2C_GetError(&I2cHandle) == HAL_I2C_ERROR_AF);
/*##-6- Monitor Status through Terminal I/O ##############################*/
/* Display through external Terminal IO the Slave Answer received */
printf("%s : %s\n", (char*)(aCommandCode[ubMasterCommandIndex][0]), (char*)aMasterReceiveBuffer);
}
/* Prepare Index to send next command code */
ubMasterCommandIndex++;
if(ubMasterCommandIndex >= ubMasterNbCommandCode)
{
ubMasterCommandIndex = 0;
}
/* For User help, keep Leds status until timeout */
HAL_Delay(LED_STATUS_TIMEOUT);
/* Then Clear and Reset process variables, arrays and Leds status, for next transfer */
FlushBuffer8(aMasterReceiveBuffer, COUNTOF(aMasterReceiveBuffer));
ubMasterNbDataToTransmit = 0;
ubMasterReceiveIndex = 0;
BSP_LED_Off(LED1);
BSP_LED_Off(LED2);
#else /* SLAVE_BOARD */
/* Infinite loop */
while (1)
{
/*##-2- Put I2C peripheral in Listen address match code process ##########*/
/* This action will allow I2C periphal to able to treat Master request when
necessary depending of transfer direction requested by Master */
if(HAL_I2C_EnableListen_IT(&I2cHandle) != HAL_OK)
{
/* Transfer error in reception process */
Error_Handler();
}
/*##-3- Wait for a new frame communication with a Master #################*/
/* Before starting a transfer, you need to wait a Master request event.
For simplicity reasons, this example is just waiting till an Address callback event,
but application may perform other tasks while transfer operation is ongoing. */
while(uwTransferInitiated != 1)
{
}
/*##-4- Wait for the end of the frame communication ######################*/
/* Before ending a transfer, you need to wait a Master end event.
For simplicity reasons, this example is just waiting till an Stop condition event,
but application may perform other tasks while transfer operation is ongoing. */
while(uwTransferEnded != 1)
{
}
/* For User help, keep Leds status until timeout */
HAL_Delay(LED_STATUS_TIMEOUT);
/*##-5- Clear, reset process variables, arrays and Leds status ###########*/
FlushBuffer8(aSlaveReceiveBuffer, COUNTOF(aSlaveReceiveBuffer));
uwTransferInitiated = 0;
uwTransferEnded = 0;
ubSlaveReceiveIndex = 0;
ubSlaveInfoIndex = 0xFF;
BSP_LED_Off(LED1);
BSP_LED_Off(LED2);
#endif /* MASTER_BOARD */
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 216000000
* HCLK(Hz) = 216000000
* AHB Prescaler = 1
* APB1 Prescaler = 4
* APB2 Prescaler = 2
* HSE Frequency(Hz) = 8000000
* PLL_M = 8
* PLL_N = 432
* PLL_P = 2
* PLL_Q = 9
* PLL_R = 7
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 7
* @param None
* @retval None
*/
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS;
RCC_OscInitStruct.HSIState = RCC_HSI_OFF;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 432;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 9;
RCC_OscInitStruct.PLL.PLLR = 7;
if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
while(1) {};
}
/* Activate the OverDrive to reach the 216 Mhz Frequency */
if(HAL_PWREx_EnableOverDrive() != HAL_OK)
{
while(1) {};
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_7) != HAL_OK)
{
while(1) {};
}
}
/**
* @brief Tx Transfer completed callback.
* @param I2cHandle: I2C handle
* @note This example shows a simple way to report end of IT Tx transfer, and
* you can add your own implementation.
* @retval None
*/
#ifdef MASTER_BOARD
void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *I2cHandle)
{
/* Turn LED1 on: Transfer in transmission process is correct */
BSP_LED_On(LED1);
}
#else
void HAL_I2C_SlaveTxCpltCallback(I2C_HandleTypeDef *I2cHandle)
{
/* Turn LED1 on: Transfer in transmission process is correct */
BSP_LED_On(LED1);
}
#endif /* MASTER_BOARD */
/**
* @brief Rx Transfer completed callback.
* @param I2cHandle: I2C handle
* @note This example shows a simple way to report end of IT Rx transfer, and
* you can add your own implementation.
* @retval None
*/
#ifdef MASTER_BOARD
void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *I2cHandle)
{
/* Turn LED2 on: Transfer in reception process is correct */
BSP_LED_On(LED2);
}
#else
void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *I2cHandle)
{
/* Turn LED2 on: Transfer in reception process is correct */
BSP_LED_On(LED2);
/* Check Command code receive previously */
/* If data received match with a Internal Command Code, set the associated index */
/* Which will use for Tranmission process if requested by Master */
if(strcmp((char *)(aSlaveReceiveBuffer), (char *)(aCommandCode[0][0])) == 0)
{
ubSlaveInfoIndex = SLAVE_CHIP_NAME;
}
else if(strcmp((char *)(aSlaveReceiveBuffer), (char *)(aCommandCode[1][0])) == 0)
{
ubSlaveInfoIndex = SLAVE_CHIP_REVISION;
}
else
{
if(HAL_I2C_Slave_Sequential_Receive_IT(I2cHandle, &aSlaveReceiveBuffer[ubSlaveReceiveIndex], 1, I2C_FIRST_FRAME) != HAL_OK)
{
Error_Handler();
}
ubSlaveReceiveIndex++;
}
}
#endif /* MASTER_BOARD */
#ifndef MASTER_BOARD
/**
* @brief Slave Address Match callback.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param TransferDirection: Master request Transfer Direction (Write/Read), value of @ref I2C_XferOptions_definition
* @param AddrMatchCode: Address Match Code
* @retval None
*/
void HAL_I2C_AddrCallback(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode)
{
if(AddrMatchCode == I2C_ADDRESS)
{
uwTransferInitiated = 1;
uwTransferDirection = TransferDirection;
/* A new communication with a Master is initiated */
/* First of all, check the transfer direction to call the correct Slave Interface */
if(uwTransferDirection == I2C_DIRECTION_TRANSMIT)
{
if(HAL_I2C_Slave_Sequential_Receive_IT(&I2cHandle, &aSlaveReceiveBuffer[ubSlaveReceiveIndex], 1, I2C_FIRST_FRAME) != HAL_OK)
{
Error_Handler();
}
ubSlaveReceiveIndex++;
}
else
{
pSlaveTransmitBuffer = (uint8_t*)(aSlaveInfo[ubSlaveInfoIndex]);
ubSlaveNbDataToTransmit = strlen((char *)(aSlaveInfo[ubSlaveInfoIndex]));
if(HAL_I2C_Slave_Sequential_Transmit_IT(&I2cHandle, pSlaveTransmitBuffer, ubSlaveNbDataToTransmit, I2C_LAST_FRAME) != HAL_OK)
{
Error_Handler();
}
}
}
else
{
/* Call Error Handler, Wrong Address Match Code */
Error_Handler();
}
}
/**
* @brief Listen Complete callback.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @retval None
*/
void HAL_I2C_ListenCpltCallback(I2C_HandleTypeDef *hi2c)
{
uwTransferEnded = 1;
/* Communication is completed */
}
#endif
/**
* @brief I2C error callbacks.
* @param I2cHandle: I2C handle
* @note This example shows a simple way to report transfer error, and you can
* add your own implementation.
* @retval None
*/
void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *I2cHandle)
{
/** Error_Handler() function is called when error occurs.
* 1- When Slave don't acknowledge it's address, Master restarts communication.
* 2- When Master don't acknowledge the last data transferred, Slave don't care in this example.
*/
if (HAL_I2C_GetError(I2cHandle) != HAL_I2C_ERROR_AF)
{
/* Turn Off LED1 */
BSP_LED_Off(LED1);
/* Turn Off LED2 */
BSP_LED_Off(LED2);
/* Turn On LED3 */
BSP_LED_On(LED3);
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* Turn LED3 on */
BSP_LED_On(LED3);
while(1)
{
}
}
/**
* @brief Flush 8-bit buffer.
* @param pBuffer1: pointer to the buffer to be flushed.
* @param BufferLength: buffer's length
* @retval None
*/
static void FlushBuffer8(uint8_t* pBuffer1, uint16_t BufferLength)
{
uint8_t Index = 0;
for (Index = 0; Index < BufferLength; Index++)
{
pBuffer1[Index] = 0;
}
}
/**
* @brief CPU L1-Cache enable.
* @param None
* @retval None
*/
static void CPU_CACHE_Enable(void)
{
/* Enable I-Cache */
SCB_EnableICache();
/* Enable D-Cache */
SCB_EnableDCache();
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/