mirror of
https://github.com/STMicroelectronics/STM32CubeF7.git
synced 2025-04-28 13:48:53 +08:00
644 lines
22 KiB
C
644 lines
22 KiB
C
/**
|
||
******************************************************************************
|
||
* @file I2C/I2C_TwoBoards_RestartAdvComIT/Src/main.c
|
||
* @author MCD Application Team
|
||
* @brief This sample code shows how to use STM32F7xx I2C HAL API to transmit
|
||
* and receive a data buffer with a communication process based on
|
||
* IT transfer and with a repeated start condition between the transmit
|
||
* and receive process..
|
||
* The communication is done using 2 Boards.
|
||
******************************************************************************
|
||
* @attention
|
||
*
|
||
* <h2><center>© Copyright (c) 2016 STMicroelectronics.
|
||
* All rights reserved.</center></h2>
|
||
*
|
||
* This software component is licensed by ST under BSD 3-Clause license,
|
||
* the "License"; You may not use this file except in compliance with the
|
||
* License. You may obtain a copy of the License at:
|
||
* opensource.org/licenses/BSD-3-Clause
|
||
*
|
||
******************************************************************************
|
||
*/
|
||
|
||
/* Includes ------------------------------------------------------------------*/
|
||
|
||
#if defined(__GNUC__)
|
||
#include <stdio.h> /*rtt*/
|
||
#include <stdlib.h> /*rtt*/
|
||
#endif
|
||
|
||
#include "main.h"
|
||
|
||
/** @addtogroup STM32F4xx_HAL_Examples
|
||
* @{
|
||
*/
|
||
|
||
/** @addtogroup I2C_TwoBoards_RestartAdvComIT
|
||
* @{
|
||
*/
|
||
|
||
/* Private typedef -----------------------------------------------------------*/
|
||
/* Private define ------------------------------------------------------------*/
|
||
/* Uncomment this line to use the board as master, if not it is used as slave */
|
||
#define MASTER_BOARD
|
||
#define I2C_ADDRESS 0x3C
|
||
|
||
/**
|
||
* @brief Defines related to Slave process
|
||
*/
|
||
#define SLAVE_CHIP_NAME 0
|
||
#define SLAVE_CHIP_REVISION 1
|
||
#define SLAVE_LAST_INFO SLAVE_CHIP_REVISION
|
||
|
||
/**
|
||
* @brief Defines related to Timeout to keep Leds status
|
||
*/
|
||
#define LED_STATUS_TIMEOUT 1000 /* 1 Second */
|
||
|
||
/**
|
||
* @brief Defines related to I2C clock speed
|
||
*/
|
||
|
||
#define I2C_TIMING 0x00D00E28 /* (Rise time = 120ns, Fall time = 25ns) */
|
||
|
||
/* Private macro -------------------------------------------------------------*/
|
||
/* Private variables ---------------------------------------------------------*/
|
||
/* I2C handler declaration */
|
||
I2C_HandleTypeDef I2cHandle;
|
||
|
||
/**
|
||
* @brief Variables related to Master process
|
||
*/
|
||
/* aCommandCode declaration array */
|
||
/* [CommandCode][RequestSlaveAnswer] */
|
||
/* {CODE, YES/NO} */
|
||
const char* aCommandCode[4][4] = {
|
||
{"CHIP_NAME", "YES"},
|
||
{"CHIP_REVISION", "YES"},
|
||
{"LOW_POWER", "NO"},
|
||
{"WAKE_UP", "NO"}};
|
||
|
||
uint8_t* pMasterTransmitBuffer = (uint8_t*)(&aCommandCode[0]);
|
||
uint8_t ubMasterNbCommandCode = sizeof(aCommandCode[0][0]);
|
||
uint8_t aMasterReceiveBuffer[0xF] = {0};
|
||
__IO uint8_t ubMasterNbDataToReceive = sizeof(aMasterReceiveBuffer);
|
||
__IO uint8_t ubMasterNbDataToTransmit = 0;
|
||
uint8_t ubMasterCommandIndex = 0;
|
||
__IO uint8_t ubMasterReceiveIndex = 0;
|
||
|
||
/**
|
||
* @brief Variables related to Slave process
|
||
*/
|
||
const char* aSlaveInfo[] = {
|
||
"STM32F767xx",
|
||
"1.2.3"};
|
||
|
||
uint8_t aSlaveReceiveBuffer[0xF] = {0};
|
||
uint8_t* pSlaveTransmitBuffer = 0;
|
||
__IO uint8_t ubSlaveNbDataToTransmit = 0;
|
||
uint8_t ubSlaveInfoIndex = 0xFF;
|
||
__IO uint8_t ubSlaveReceiveIndex = 0;
|
||
uint32_t uwTransferDirection = 0;
|
||
__IO uint32_t uwTransferInitiated = 0;
|
||
__IO uint32_t uwTransferEnded = 0;
|
||
|
||
/* Private function prototypes -----------------------------------------------*/
|
||
static void SystemClock_Config(void);
|
||
static void FlushBuffer8(uint8_t* pBuffer1, uint16_t BufferLength);
|
||
static void Error_Handler(void);
|
||
static void CPU_CACHE_Enable(void);
|
||
|
||
#if defined(__GNUC__) && defined (MASTER_BOARD)
|
||
extern void initialise_monitor_handles(void); /*rtt*/
|
||
#endif
|
||
|
||
/* Private functions ---------------------------------------------------------*/
|
||
|
||
/**
|
||
* @brief Main program
|
||
* @param None
|
||
* @retval None
|
||
*/
|
||
int main(void)
|
||
{
|
||
#if defined(__GNUC__) && defined (MASTER_BOARD)
|
||
initialise_monitor_handles(); /*rtt*/
|
||
#endif
|
||
|
||
/* Enable the CPU Cache */
|
||
CPU_CACHE_Enable();
|
||
|
||
/* STM32F7xx HAL library initialization:
|
||
- Configure the Flash prefetch, instruction and Data caches
|
||
- Systick timer is configured by default as source of time base, but user
|
||
can eventually implement his proper time base source (a general purpose
|
||
timer for example or other time source), keeping in mind that Time base
|
||
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
|
||
handled in milliseconds basis.
|
||
- Set NVIC Group Priority to 4
|
||
- Low Level Initialization: global MSP (MCU Support Package) initialization
|
||
*/
|
||
HAL_Init();
|
||
|
||
/* Configure the system clock to 216 MHz */
|
||
SystemClock_Config();
|
||
|
||
/* Configure LED1, LED2, and LED3 */
|
||
BSP_LED_Init(LED1);
|
||
BSP_LED_Init(LED2);
|
||
BSP_LED_Init(LED3);
|
||
|
||
/*##-1- Configure the I2C peripheral ######################################*/
|
||
I2cHandle.Instance = I2Cx;
|
||
I2cHandle.Init.Timing = I2C_TIMING;
|
||
I2cHandle.Init.OwnAddress1 = I2C_ADDRESS;
|
||
I2cHandle.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
|
||
I2cHandle.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
|
||
I2cHandle.Init.OwnAddress2 = 0xFE;
|
||
I2cHandle.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
|
||
I2cHandle.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
|
||
|
||
if(HAL_I2C_Init(&I2cHandle) != HAL_OK)
|
||
{
|
||
/* Initialization Error */
|
||
Error_Handler();
|
||
}
|
||
|
||
/* Enable Fast Mode Plus FM+ on I2C1 */
|
||
HAL_I2CEx_EnableFastModePlus(I2C_FASTMODEPLUS_I2C1);
|
||
|
||
#ifdef MASTER_BOARD
|
||
|
||
/* Configure User push-button button */
|
||
BSP_PB_Init(BUTTON_USER,BUTTON_MODE_GPIO);
|
||
|
||
/* Infinite loop */
|
||
while (1)
|
||
{
|
||
/* Wait for User push-button press before starting the Communication */
|
||
while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_SET)
|
||
{
|
||
}
|
||
|
||
/* Wait for User push-button release before starting the Communication */
|
||
while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_RESET)
|
||
{
|
||
}
|
||
|
||
/* The board sends the message and expects to receive it back if necessary. */
|
||
|
||
/* If Master no request a Slave answer, Run master in transmitter mode only. */
|
||
if(strncmp(aCommandCode[ubMasterCommandIndex][1], "NO", 2) == 0)
|
||
{
|
||
/*##-2- Start the transmission process #####################################*/
|
||
/* Master prepare and send the transmission buffer ("pMasterTransmitBuffer")
|
||
through a "New" communication frame. The communication will be stopped at
|
||
the end of transmission process thanks to "I2C_FIRST_AND_LAST_FRAME" option usage. */
|
||
pMasterTransmitBuffer = (uint8_t*)(aCommandCode[ubMasterCommandIndex][0]);
|
||
ubMasterNbDataToTransmit = strlen((char *)(aCommandCode[ubMasterCommandIndex][0]));
|
||
|
||
/* Handle I2C events (Master Transmit only) */
|
||
do
|
||
{
|
||
if(HAL_I2C_Master_Seq_Transmit_IT(&I2cHandle, (uint16_t)I2C_ADDRESS, pMasterTransmitBuffer, ubMasterNbDataToTransmit, I2C_FIRST_AND_LAST_FRAME)!= HAL_OK)
|
||
{
|
||
/* Error_Handler() function is called when error occurs. */
|
||
Error_Handler();
|
||
}
|
||
|
||
/*##-3- Wait for the end of the transfer #################################*/
|
||
/* Before starting a new communication transfer, you need to check the current
|
||
state of the peripheral; if it<69>s busy you need to wait for the end of current
|
||
transfer before starting a new one.
|
||
For simplicity reasons, this example is just waiting till the end of the
|
||
transfer, but application may perform other tasks while transfer operation
|
||
is ongoing. */
|
||
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
|
||
{
|
||
}
|
||
|
||
/* When Acknowledge failure occurs (Slave don't acknowledge it's address)
|
||
Master restarts communication */
|
||
}
|
||
while(HAL_I2C_GetError(&I2cHandle) == HAL_I2C_ERROR_AF);
|
||
|
||
/*##-4- Monitor Status through Terminal I/O ##############################*/
|
||
/* Display through external Terminal IO the Command Code acknowledge by Slave device */
|
||
printf("Slave goes to %s.\n", (char*)(aCommandCode[ubMasterCommandIndex][0]));
|
||
}
|
||
/* Else Master request a Slave answer, Run master in transmitter mode then receiver mode. */
|
||
else
|
||
{
|
||
/*##-2- Start the transmission process #####################################*/
|
||
/* Master prepare and send the transmission buffer ("pMasterTransmitBuffer")
|
||
through a "New" communication frame. The communication will not stopped thanks
|
||
to "I2C_FIRST_FRAME" option usage. This will allow to generate a restart condition
|
||
after change the I2C peripheral from transmission process to reception process */
|
||
pMasterTransmitBuffer = (uint8_t*)(aCommandCode[ubMasterCommandIndex][0]);
|
||
ubMasterNbDataToTransmit = strlen((char *)(aCommandCode[ubMasterCommandIndex][0]));
|
||
|
||
/* Handle I2C events (Master Transmit only) */
|
||
do
|
||
{
|
||
if(HAL_I2C_Master_Seq_Transmit_IT(&I2cHandle, (uint16_t)I2C_ADDRESS, pMasterTransmitBuffer, ubMasterNbDataToTransmit, I2C_FIRST_FRAME)!= HAL_OK)
|
||
{
|
||
/* Error_Handler() function is called when error occurs. */
|
||
Error_Handler();
|
||
}
|
||
|
||
/*##-3- Wait for the end of the transfer #################################*/
|
||
/* Before starting a new communication transfer, you need to check the current
|
||
state of the peripheral; if it<69>s busy you need to wait for the end of current
|
||
transfer before starting a new one.
|
||
For simplicity reasons, this example is just waiting till the end of the
|
||
transfer, but application may perform other tasks while transfer operation
|
||
is ongoing. */
|
||
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
|
||
{
|
||
}
|
||
|
||
/* When Acknowledge failure occurs (Slave don't acknowledge it's address)
|
||
Master restarts communication */
|
||
}
|
||
while(HAL_I2C_GetError(&I2cHandle) == HAL_I2C_ERROR_AF);
|
||
|
||
/*##-4- Put I2C peripheral in reception process ###########################*/
|
||
/* Master generate a restart condition and then change the I2C peripheral
|
||
from transmission process to reception process, to retrieve information
|
||
data from Slave device. */
|
||
do
|
||
{
|
||
if(HAL_I2C_Master_Seq_Receive_IT(&I2cHandle, (uint16_t)I2C_ADDRESS, aMasterReceiveBuffer, strlen((char *)(aSlaveInfo[ubMasterCommandIndex])), I2C_LAST_FRAME)!= HAL_OK)
|
||
{
|
||
/* Error_Handler() function is called when error occurs. */
|
||
Error_Handler();
|
||
}
|
||
|
||
/*##-5- Wait for the end of the transfer #################################*/
|
||
/* Before starting a new communication transfer, you need to check the current
|
||
state of the peripheral; if it<69>s busy you need to wait for the end of current
|
||
transfer before starting a new one.
|
||
For simplicity reasons, this example is just waiting till the end of the
|
||
transfer, but application may perform other tasks while transfer operation
|
||
is ongoing. */
|
||
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
|
||
{
|
||
}
|
||
|
||
/* When Acknowledge failure occurs (Slave don't acknowledge it's address)
|
||
Master restarts communication */
|
||
}
|
||
while(HAL_I2C_GetError(&I2cHandle) == HAL_I2C_ERROR_AF);
|
||
|
||
/*##-6- Monitor Status through Terminal I/O ##############################*/
|
||
/* Display through external Terminal IO the Slave Answer received */
|
||
printf("%s : %s\n", (char*)(aCommandCode[ubMasterCommandIndex][0]), (char*)aMasterReceiveBuffer);
|
||
}
|
||
|
||
|
||
/* Prepare Index to send next command code */
|
||
ubMasterCommandIndex++;
|
||
if(ubMasterCommandIndex >= ubMasterNbCommandCode)
|
||
{
|
||
ubMasterCommandIndex = 0;
|
||
}
|
||
|
||
/* For User help, keep Leds status until timeout */
|
||
HAL_Delay(LED_STATUS_TIMEOUT);
|
||
|
||
/* Then Clear and Reset process variables, arrays and Leds status, for next transfer */
|
||
FlushBuffer8(aMasterReceiveBuffer, COUNTOF(aMasterReceiveBuffer));
|
||
ubMasterNbDataToTransmit = 0;
|
||
ubMasterReceiveIndex = 0;
|
||
BSP_LED_Off(LED1);
|
||
BSP_LED_Off(LED2);
|
||
|
||
#else /* SLAVE_BOARD */
|
||
|
||
/* Infinite loop */
|
||
while (1)
|
||
{
|
||
/*##-2- Put I2C peripheral in Listen address match code process ##########*/
|
||
/* This action will allow I2C periphal to able to treat Master request when
|
||
necessary depending of transfer direction requested by Master */
|
||
if(HAL_I2C_EnableListen_IT(&I2cHandle) != HAL_OK)
|
||
{
|
||
/* Transfer error in reception process */
|
||
Error_Handler();
|
||
}
|
||
|
||
/*##-3- Wait for a new frame communication with a Master #################*/
|
||
/* Before starting a transfer, you need to wait a Master request event.
|
||
For simplicity reasons, this example is just waiting till an Address callback event,
|
||
but application may perform other tasks while transfer operation is ongoing. */
|
||
while(uwTransferInitiated != 1)
|
||
{
|
||
}
|
||
|
||
/*##-4- Wait for the end of the frame communication ######################*/
|
||
/* Before ending a transfer, you need to wait a Master end event.
|
||
For simplicity reasons, this example is just waiting till an Stop condition event,
|
||
but application may perform other tasks while transfer operation is ongoing. */
|
||
while(uwTransferEnded != 1)
|
||
{
|
||
}
|
||
|
||
/* For User help, keep Leds status until timeout */
|
||
HAL_Delay(LED_STATUS_TIMEOUT);
|
||
|
||
/*##-5- Clear, reset process variables, arrays and Leds status ###########*/
|
||
FlushBuffer8(aSlaveReceiveBuffer, COUNTOF(aSlaveReceiveBuffer));
|
||
uwTransferInitiated = 0;
|
||
uwTransferEnded = 0;
|
||
ubSlaveReceiveIndex = 0;
|
||
ubSlaveInfoIndex = 0xFF;
|
||
BSP_LED_Off(LED1);
|
||
BSP_LED_Off(LED2);
|
||
#endif /* MASTER_BOARD */
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief System Clock Configuration
|
||
* The system Clock is configured as follow :
|
||
* System Clock source = PLL (HSE)
|
||
* SYSCLK(Hz) = 216000000
|
||
* HCLK(Hz) = 216000000
|
||
* AHB Prescaler = 1
|
||
* APB1 Prescaler = 4
|
||
* APB2 Prescaler = 2
|
||
* HSE Frequency(Hz) = 8000000
|
||
* PLL_M = 8
|
||
* PLL_N = 432
|
||
* PLL_P = 2
|
||
* PLL_Q = 9
|
||
* PLL_R = 7
|
||
* VDD(V) = 3.3
|
||
* Main regulator output voltage = Scale1 mode
|
||
* Flash Latency(WS) = 7
|
||
* @param None
|
||
* @retval None
|
||
*/
|
||
static void SystemClock_Config(void)
|
||
{
|
||
RCC_ClkInitTypeDef RCC_ClkInitStruct;
|
||
RCC_OscInitTypeDef RCC_OscInitStruct;
|
||
|
||
/* Enable HSE Oscillator and activate PLL with HSE as source */
|
||
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
|
||
RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS;
|
||
RCC_OscInitStruct.HSIState = RCC_HSI_OFF;
|
||
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
|
||
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
|
||
RCC_OscInitStruct.PLL.PLLM = 8;
|
||
RCC_OscInitStruct.PLL.PLLN = 432;
|
||
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
|
||
RCC_OscInitStruct.PLL.PLLQ = 9;
|
||
RCC_OscInitStruct.PLL.PLLR = 7;
|
||
if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
|
||
{
|
||
while(1) {};
|
||
}
|
||
|
||
/* Activate the OverDrive to reach the 216 Mhz Frequency */
|
||
if(HAL_PWREx_EnableOverDrive() != HAL_OK)
|
||
{
|
||
while(1) {};
|
||
}
|
||
|
||
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
|
||
clocks dividers */
|
||
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
|
||
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
|
||
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
|
||
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
|
||
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
|
||
if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_7) != HAL_OK)
|
||
{
|
||
while(1) {};
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief Tx Transfer completed callback.
|
||
* @param I2cHandle: I2C handle
|
||
* @note This example shows a simple way to report end of IT Tx transfer, and
|
||
* you can add your own implementation.
|
||
* @retval None
|
||
*/
|
||
#ifdef MASTER_BOARD
|
||
void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *I2cHandle)
|
||
{
|
||
/* Turn LED1 on: Transfer in transmission process is correct */
|
||
BSP_LED_On(LED1);
|
||
}
|
||
#else
|
||
void HAL_I2C_SlaveTxCpltCallback(I2C_HandleTypeDef *I2cHandle)
|
||
{
|
||
/* Turn LED1 on: Transfer in transmission process is correct */
|
||
BSP_LED_On(LED1);
|
||
}
|
||
#endif /* MASTER_BOARD */
|
||
|
||
/**
|
||
* @brief Rx Transfer completed callback.
|
||
* @param I2cHandle: I2C handle
|
||
* @note This example shows a simple way to report end of IT Rx transfer, and
|
||
* you can add your own implementation.
|
||
* @retval None
|
||
*/
|
||
#ifdef MASTER_BOARD
|
||
void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *I2cHandle)
|
||
{
|
||
/* Turn LED2 on: Transfer in reception process is correct */
|
||
BSP_LED_On(LED2);
|
||
}
|
||
#else
|
||
void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *I2cHandle)
|
||
{
|
||
/* Turn LED2 on: Transfer in reception process is correct */
|
||
BSP_LED_On(LED2);
|
||
|
||
/* Check Command code receive previously */
|
||
/* If data received match with a Internal Command Code, set the associated index */
|
||
/* Which will use for Tranmission process if requested by Master */
|
||
if(strcmp((char *)(aSlaveReceiveBuffer), (char *)(aCommandCode[0][0])) == 0)
|
||
{
|
||
ubSlaveInfoIndex = SLAVE_CHIP_NAME;
|
||
}
|
||
else if(strcmp((char *)(aSlaveReceiveBuffer), (char *)(aCommandCode[1][0])) == 0)
|
||
{
|
||
ubSlaveInfoIndex = SLAVE_CHIP_REVISION;
|
||
}
|
||
else
|
||
{
|
||
if(HAL_I2C_Slave_Sequential_Receive_IT(I2cHandle, &aSlaveReceiveBuffer[ubSlaveReceiveIndex], 1, I2C_FIRST_FRAME) != HAL_OK)
|
||
{
|
||
Error_Handler();
|
||
}
|
||
ubSlaveReceiveIndex++;
|
||
}
|
||
}
|
||
#endif /* MASTER_BOARD */
|
||
|
||
#ifndef MASTER_BOARD
|
||
/**
|
||
* @brief Slave Address Match callback.
|
||
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
|
||
* the configuration information for the specified I2C.
|
||
* @param TransferDirection: Master request Transfer Direction (Write/Read), value of @ref I2C_XferOptions_definition
|
||
* @param AddrMatchCode: Address Match Code
|
||
* @retval None
|
||
*/
|
||
void HAL_I2C_AddrCallback(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode)
|
||
{
|
||
if(AddrMatchCode == I2C_ADDRESS)
|
||
{
|
||
uwTransferInitiated = 1;
|
||
uwTransferDirection = TransferDirection;
|
||
|
||
/* A new communication with a Master is initiated */
|
||
|
||
/* First of all, check the transfer direction to call the correct Slave Interface */
|
||
if(uwTransferDirection == I2C_DIRECTION_TRANSMIT)
|
||
{
|
||
if(HAL_I2C_Slave_Sequential_Receive_IT(&I2cHandle, &aSlaveReceiveBuffer[ubSlaveReceiveIndex], 1, I2C_FIRST_FRAME) != HAL_OK)
|
||
{
|
||
Error_Handler();
|
||
}
|
||
ubSlaveReceiveIndex++;
|
||
}
|
||
else
|
||
{
|
||
pSlaveTransmitBuffer = (uint8_t*)(aSlaveInfo[ubSlaveInfoIndex]);
|
||
ubSlaveNbDataToTransmit = strlen((char *)(aSlaveInfo[ubSlaveInfoIndex]));
|
||
|
||
if(HAL_I2C_Slave_Sequential_Transmit_IT(&I2cHandle, pSlaveTransmitBuffer, ubSlaveNbDataToTransmit, I2C_LAST_FRAME) != HAL_OK)
|
||
{
|
||
Error_Handler();
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Call Error Handler, Wrong Address Match Code */
|
||
Error_Handler();
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief Listen Complete callback.
|
||
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
|
||
* the configuration information for the specified I2C.
|
||
* @retval None
|
||
*/
|
||
void HAL_I2C_ListenCpltCallback(I2C_HandleTypeDef *hi2c)
|
||
{
|
||
uwTransferEnded = 1;
|
||
/* Communication is completed */
|
||
}
|
||
#endif
|
||
|
||
/**
|
||
* @brief I2C error callbacks.
|
||
* @param I2cHandle: I2C handle
|
||
* @note This example shows a simple way to report transfer error, and you can
|
||
* add your own implementation.
|
||
* @retval None
|
||
*/
|
||
void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *I2cHandle)
|
||
{
|
||
/** Error_Handler() function is called when error occurs.
|
||
* 1- When Slave don't acknowledge it's address, Master restarts communication.
|
||
* 2- When Master don't acknowledge the last data transferred, Slave don't care in this example.
|
||
*/
|
||
if (HAL_I2C_GetError(I2cHandle) != HAL_I2C_ERROR_AF)
|
||
{
|
||
/* Turn Off LED1 */
|
||
BSP_LED_Off(LED1);
|
||
|
||
/* Turn Off LED2 */
|
||
BSP_LED_Off(LED2);
|
||
|
||
/* Turn On LED3 */
|
||
BSP_LED_On(LED3);
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief This function is executed in case of error occurrence.
|
||
* @param None
|
||
* @retval None
|
||
*/
|
||
static void Error_Handler(void)
|
||
{
|
||
/* Turn LED3 on */
|
||
BSP_LED_On(LED3);
|
||
while(1)
|
||
{
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief Flush 8-bit buffer.
|
||
* @param pBuffer1: pointer to the buffer to be flushed.
|
||
* @param BufferLength: buffer's length
|
||
* @retval None
|
||
*/
|
||
static void FlushBuffer8(uint8_t* pBuffer1, uint16_t BufferLength)
|
||
{
|
||
uint8_t Index = 0;
|
||
|
||
for (Index = 0; Index < BufferLength; Index++)
|
||
{
|
||
pBuffer1[Index] = 0;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief CPU L1-Cache enable.
|
||
* @param None
|
||
* @retval None
|
||
*/
|
||
static void CPU_CACHE_Enable(void)
|
||
{
|
||
/* Enable I-Cache */
|
||
SCB_EnableICache();
|
||
|
||
/* Enable D-Cache */
|
||
SCB_EnableDCache();
|
||
}
|
||
|
||
#ifdef USE_FULL_ASSERT
|
||
|
||
/**
|
||
* @brief Reports the name of the source file and the source line number
|
||
* where the assert_param error has occurred.
|
||
* @param file: pointer to the source file name
|
||
* @param line: assert_param error line source number
|
||
* @retval None
|
||
*/
|
||
void assert_failed(uint8_t* file, uint32_t line)
|
||
{
|
||
/* User can add his own implementation to report the file name and line number,
|
||
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
|
||
|
||
/* Infinite loop */
|
||
while (1)
|
||
{
|
||
}
|
||
}
|
||
#endif
|
||
|
||
|
||
/**
|
||
* @}
|
||
*/
|
||
|
||
/**
|
||
* @}
|
||
*/
|
||
|
||
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|