/** ****************************************************************************** * @file Examples_LL/TIM/TIM_OnePulse/Src/main.c * @author MCD Application Team * @brief This example describes how to use a timer instance in one * pulse mode through the STM32F7xx TIM LL API. * Peripheral initialization done using LL unitary services functions. ****************************************************************************** * @attention * *

© Copyright (c) 2016 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F7xx_LL_Examples * @{ */ /** @addtogroup TIM_OnePulse * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Measured pulse delay (in us) */ __IO uint32_t uwMeasuredDelay = 0; /* Measured pulse length (in us) */ __IO uint32_t uwMeasuredPulseLength = 0; /* Private function prototypes -----------------------------------------------*/ __STATIC_INLINE void SystemClock_Config(void); __STATIC_INLINE void ConfigureTIMOnePulse_SwTrigger(void); __STATIC_INLINE void ConfigureTIMOnePulse_TI2Trigger(void); __STATIC_INLINE void LED_Init(void); __STATIC_INLINE void UserButton_Init(void); static void CPU_CACHE_Enable(void); /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None */ int main(void) { /* Enable the CPU Cache */ CPU_CACHE_Enable(); /* Configure the system clock to 216 MHz MHz */ SystemClock_Config(); /* Initialize LED2 */ LED_Init(); /* Initialize button in EXTI mode */ UserButton_Init(); /* Configure timer instance in one pulse mode: timer counter is started by */ /* software. */ ConfigureTIMOnePulse_SwTrigger(); /* Configure timer instance in one pulse mode: timer counter is started by */ /* rising edge on the TI2 input pin. */ ConfigureTIMOnePulse_TI2Trigger(); /* Infinite loop */ while (1) { } } /** * @brief This function configures TIM1 to generate a positive pulse on OC1 * with a length of 50 us and after a delay of 50 us after enabling * the timer counter. * @note The counter is enabled every time the user presses the user button. * @note The delay and the pulse length are measured in the CC1 interrupt * service routine. * @note Peripheral configuration is minimal configuration from reset values. * Thus, some useless LL unitary functions calls below are provided as * commented examples - setting is default configuration from reset. * @param None * @retval None */ __STATIC_INLINE void ConfigureTIMOnePulse_SwTrigger(void) { /*************************/ /* GPIO AF configuration */ /*************************/ /* Enable the peripheral clock of GPIOs */ LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOE); /* GPIO TIM1_CH1 configuration */ LL_GPIO_SetPinMode(GPIOE, LL_GPIO_PIN_9, LL_GPIO_MODE_ALTERNATE); LL_GPIO_SetPinPull(GPIOE, LL_GPIO_PIN_9, LL_GPIO_PULL_DOWN); LL_GPIO_SetPinSpeed(GPIOE, LL_GPIO_PIN_9, LL_GPIO_SPEED_FREQ_HIGH); LL_GPIO_SetAFPin_8_15(GPIOE, LL_GPIO_PIN_9, LL_GPIO_AF_1); /***********************************************/ /* Configure the NVIC to handle TIM1 interrupt */ /***********************************************/ NVIC_SetPriority(TIM1_CC_IRQn, 0); NVIC_EnableIRQ(TIM1_CC_IRQn); /******************************/ /* Peripheral clocks enabling */ /******************************/ /* Enable the peripheral clock of TIM1 */ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_TIM1); /*********************************/ /* Output waveform configuration */ /*********************************/ /* Select counter mode: counting up */ LL_TIM_SetCounterMode(TIM1, LL_TIM_COUNTERMODE_UP); /* Set the one pulse mode: generate only 1 pulse*/ LL_TIM_SetOnePulseMode(TIM1, LL_TIM_ONEPULSEMODE_SINGLE); /* Set the TIM1 prescaler to get counter clock frequency at 10 MHz */ /* In this example TIM1 input clock (TIM1CLK) is set to APB2 clock (PCLK2), */ /* since APB2 pre-scaler is equal to 1. */ /* TIM1CLK = PCLK2 */ /* PCLK2 = HCLK */ /* => TIM1CLK = SystemCoreClock (216 MHz) */ LL_TIM_SetPrescaler(TIM1, __LL_TIM_CALC_PSC(SystemCoreClock, 10000000)); /* Set the capture/compare register to get a pulse delay of 50 us */ LL_TIM_OC_SetCompareCH1(TIM1, __LL_TIM_CALC_DELAY(SystemCoreClock, LL_TIM_GetPrescaler(TIM1), 50)); /* Set the autoreload register to get a pulse length of 50s */ LL_TIM_SetAutoReload(TIM1, __LL_TIM_CALC_PULSE(SystemCoreClock, LL_TIM_GetPrescaler(TIM1), 50, 50)); /* Set output channel 1 in PWM2 mode */ LL_TIM_OC_SetMode(TIM1, LL_TIM_CHANNEL_CH1, LL_TIM_OCMODE_PWM2); /* Configure output channel 1 */ LL_TIM_OC_ConfigOutput(TIM1, LL_TIM_CHANNEL_CH1, LL_TIM_OCPOLARITY_HIGH | LL_TIM_OCIDLESTATE_LOW); /**************************/ /* TIM1 interrupts set-up */ /**************************/ /* Enable the capture/compare interrupt for channel 1 */ LL_TIM_EnableIT_CC1(TIM1); /**************************/ /* Start pulse generation */ /**************************/ /* Enable channel 1 */ LL_TIM_CC_EnableChannel(TIM1, LL_TIM_CHANNEL_CH1); /* Enable TIM1 outputs */ LL_TIM_EnableAllOutputs(TIM1); /* Enable auto-reload register preload */ LL_TIM_EnableARRPreload(TIM1); /* Force update generation */ LL_TIM_GenerateEvent_UPDATE(TIM1); } /** * @brief This function configures TIM3 to generate a positive pulse on OC3 * with a length of 3 s and after a delay of 2 s as soon as a positive * edge is detected on the TI2 input pin. * @param None * @retval None */ __STATIC_INLINE void ConfigureTIMOnePulse_TI2Trigger(void) { uint32_t TIM3_clk; /******************************/ /* Peripheral clocks enabling */ /******************************/ /* Enable the peripheral clock of GPIOs */ LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOB);; /* Enable the peripheral clock of TIM3 */ LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM3); /*************************/ /* GPIO AF configuration */ /*************************/ /* GPIO TIM3_CH3 configuration */ LL_GPIO_SetPinMode(GPIOB, LL_GPIO_PIN_0, LL_GPIO_MODE_ALTERNATE); LL_GPIO_SetPinPull(GPIOB, LL_GPIO_PIN_0, LL_GPIO_PULL_DOWN); LL_GPIO_SetPinSpeed(GPIOB, LL_GPIO_PIN_0, LL_GPIO_SPEED_FREQ_HIGH); LL_GPIO_SetAFPin_0_7(GPIOB, LL_GPIO_PIN_0, LL_GPIO_AF_2); /* GPIO TIM3_CH2 configuration */ LL_GPIO_SetPinMode(GPIOB, LL_GPIO_PIN_5, LL_GPIO_MODE_ALTERNATE); LL_GPIO_SetPinPull(GPIOB, LL_GPIO_PIN_5, LL_GPIO_PULL_DOWN); LL_GPIO_SetPinSpeed(GPIOB, LL_GPIO_PIN_5, LL_GPIO_SPEED_FREQ_HIGH); LL_GPIO_SetAFPin_0_7(GPIOB, LL_GPIO_PIN_5, LL_GPIO_AF_2); /*******************************/ /* Input trigger configuration */ /*******************************/ /* Map TI2FP2 on TI2 */ LL_TIM_IC_SetActiveInput(TIM3, LL_TIM_CHANNEL_CH2, LL_TIM_ACTIVEINPUT_DIRECTTI); /* TI2FP2 must detect a rising edge */ LL_TIM_IC_SetPolarity(TIM3, LL_TIM_CHANNEL_CH2, LL_TIM_IC_POLARITY_RISING); /* Configure TI2FP2 as trigger */ LL_TIM_SetTriggerInput(TIM3, LL_TIM_TS_TI2FP2); /* Enable the slave mode controller: TI2FP2 is used to start the counter */ LL_TIM_SetSlaveMode(TIM3, LL_TIM_SLAVEMODE_TRIGGER); /*********************************/ /* Output waveform configuration */ /*********************************/ /* Select counter mode: counting up */ LL_TIM_SetCounterMode(TIM3, LL_TIM_COUNTERMODE_UP); /* Set the one pulse mode: generate only 1 pulse */ LL_TIM_SetOnePulseMode(TIM3, LL_TIM_ONEPULSEMODE_SINGLE); /* In this example TIM3 input clock (TIM3CLK) is set to APB1 clock (PCLK1), */ /* since APB1 pre-scaler is equal to 1. */ /* TIM3CLK = PCLK1 */ /* PCLK1 = HCLK */ /* => TIM3CLK = SystemCoreClock (216 MHz) */ TIM3_clk = SystemCoreClock/2; /* Set the TIM3 prescaler to get counter clock frequency at 2 kHz */ LL_TIM_SetPrescaler(TIM3, __LL_TIM_CALC_PSC(TIM3_clk, 2000)); /* Set the capture/compare register to get a pulse delay of 2s (2000000 us)*/ LL_TIM_OC_SetCompareCH3(TIM3, __LL_TIM_CALC_DELAY(TIM3_clk, LL_TIM_GetPrescaler(TIM3), 2000000)); /* Set the autoreload register to get a pulse length of 3s (3000000 us)*/ LL_TIM_SetAutoReload(TIM3, __LL_TIM_CALC_PULSE(TIM3_clk, LL_TIM_GetPrescaler(TIM3), 2000000, 3000000)); /* Set output channel 1 in PWM2 mode */ LL_TIM_OC_SetMode(TIM3, LL_TIM_CHANNEL_CH3, LL_TIM_OCMODE_PWM2); /* Configure output channel 3 configuration */ LL_TIM_OC_ConfigOutput(TIM3, LL_TIM_CHANNEL_CH3, LL_TIM_OCPOLARITY_HIGH | LL_TIM_OCIDLESTATE_LOW); /**************************/ /* Start pulse generation */ /**************************/ /* Enable channel 3 */ LL_TIM_CC_EnableChannel(TIM3, LL_TIM_CHANNEL_CH3); /* Enable auto-reload register preload */ LL_TIM_EnableARRPreload(TIM3); /* Force update generation */ LL_TIM_GenerateEvent_UPDATE(TIM3); } /** * @brief Initialize LED1. * @param None * @retval None */ __STATIC_INLINE void LED_Init(void) { /* Enable the LED1 Clock */ LED1_GPIO_CLK_ENABLE(); /* Configure IO in output push-pull mode to drive external LED1 */ LL_GPIO_SetPinMode(LED1_GPIO_PORT, LED1_PIN, LL_GPIO_MODE_OUTPUT); /* Reset value is LL_GPIO_OUTPUT_PUSHPULL */ //LL_GPIO_SetPinOutputType(LED1_GPIO_PORT, LED1_PIN, LL_GPIO_OUTPUT_PUSHPULL); /* Reset value is LL_GPIO_SPEED_FREQ_LOW */ //LL_GPIO_SetPinSpeed(LED1_GPIO_PORT, LED1_PIN, LL_GPIO_SPEED_FREQ_LOW); /* Reset value is LL_GPIO_PULL_NO */ //LL_GPIO_SetPinPull(LED1_GPIO_PORT, LED1_PIN, LL_GPIO_PULL_NO); } /** * @brief Configures User push-button in GPIO or EXTI Line Mode. * @param None * @retval None */ __STATIC_INLINE void UserButton_Init(void) { /* Enable the BUTTON Clock */ USER_BUTTON_GPIO_CLK_ENABLE(); /* Configure GPIO for BUTTON */ LL_GPIO_SetPinMode(USER_BUTTON_GPIO_PORT, USER_BUTTON_PIN, LL_GPIO_MODE_INPUT); LL_GPIO_SetPinPull(USER_BUTTON_GPIO_PORT, USER_BUTTON_PIN, LL_GPIO_PULL_NO); /* Connect External Line to the GPIO*/ USER_BUTTON_SYSCFG_SET_EXTI(); /* Enable a rising trigger EXTI line 13 Interrupt */ USER_BUTTON_EXTI_LINE_ENABLE(); USER_BUTTON_EXTI_FALLING_TRIG_ENABLE(); /* Configure NVIC for USER_BUTTON_EXTI_IRQn */ NVIC_EnableIRQ(USER_BUTTON_EXTI_IRQn); NVIC_SetPriority(USER_BUTTON_EXTI_IRQn,0x03); } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 216000000 * HCLK(Hz) = 216000000 * AHB Prescaler = 1 * APB1 Prescaler = 4 * APB2 Prescaler = 2 * HSI Frequency(Hz) = 8000000 * PLL_M = 8 * PLL_N = 432 * PLL_P = 2 * VDD(V) = 3.3 * Main regulator output voltage = Scale1 mode * Flash Latency(WS) = 7 * @param None * @retval None */ void SystemClock_Config(void) { /* Enable HSE clock */ LL_RCC_HSE_EnableBypass(); LL_RCC_HSE_Enable(); while(LL_RCC_HSE_IsReady() != 1) { }; /* Set FLASH latency */ LL_FLASH_SetLatency(LL_FLASH_LATENCY_7); /* Enable PWR clock */ LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_PWR); /* Activation OverDrive Mode */ LL_PWR_EnableOverDriveMode(); while(LL_PWR_IsActiveFlag_OD() != 1) { }; /* Activation OverDrive Switching */ LL_PWR_EnableOverDriveSwitching(); while(LL_PWR_IsActiveFlag_ODSW() != 1) { }; /* Main PLL configuration and activation */ LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSE, LL_RCC_PLLM_DIV_8, 432, LL_RCC_PLLP_DIV_2); LL_RCC_PLL_Enable(); while(LL_RCC_PLL_IsReady() != 1) { }; /* Sysclk activation on the main PLL */ LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1); LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL); while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL) { }; /* Set APB1 & APB2 prescaler */ LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_4); LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_2); /* Set systick to 1ms */ SysTick_Config(216000000 / 1000); /* Update CMSIS variable (which can be updated also through SystemCoreClockUpdate function) */ SystemCoreClock = 216000000; } /** * @brief CPU L1-Cache enable. * @param None * @retval None */ static void CPU_CACHE_Enable(void) { /* Enable I-Cache */ SCB_EnableICache(); /* Enable D-Cache */ SCB_EnableDCache(); } /******************************************************************************/ /* USER IRQ HANDLER TREATMENT */ /******************************************************************************/ /** * @brief User button interrupt processing * @note TIM1 counter is enabled every time the user button is presssed. * @param None * @retval None */ void UserButton_Callback(void) { /* Enable counter. Note that the counter will stop automatically at the */ /* next update event (UEV). */ LL_TIM_EnableCounter(TIM1); } /** * @brief Timer capture/compare interrupt processing * @note Calculates the pulse delay and pulse length of the output waveform * generated by TIM1. * @param None * @retval None */ void TimerCaptureCompare_Callback(void) { uint32_t CNT; uint32_t PSC; uint32_t ARR; CNT = LL_TIM_GetCounter(TIM1); PSC = LL_TIM_GetPrescaler(TIM1); ARR = LL_TIM_GetAutoReload(TIM1); uwMeasuredDelay = (CNT * 1000000)/(SystemCoreClock/(PSC + 1)); uwMeasuredPulseLength = ((ARR - CNT) * 1000000)/(SystemCoreClock/(PSC + 1)); } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/