/** ****************************************************************************** * @file PWR/PWR_CurrentConsumption/Src/main.c * @author MCD Application Team * @brief This example shows how to use STM32F7xx PWR HAL API to enter * and exit the Low power modes. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F7xx_HAL_Examples * @{ */ /** @addtogroup PWR_CurrentConsumption * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ __IO uint32_t uwCounter = 0; /* Private function prototypes -----------------------------------------------*/ static void MPU_Config(void); static void SystemClock_Config(void); static void CPU_CACHE_Enable(void); /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None */ int main(void) { /* Configure the MPU attributes */ MPU_Config(); /* Enable the CPU Cache */ CPU_CACHE_Enable(); /* STM32F7xx HAL library initialization: - Configure the Flash prefetch, instruction and Data caches - Configure the Systick to generate an interrupt each 1 msec - Set NVIC Group Priority to 4 - Global MSP (MCU Support Package) initialization */ HAL_Init(); /* Configure the system clock to 216 MHz */ SystemClock_Config(); /* Configure LED1 and LED3 */ BSP_LED_Init(LED1); BSP_LED_Init(LED3); /* Enable Power Clock */ __HAL_RCC_PWR_CLK_ENABLE(); /* Check and handle if the system was resumed from Standby mode */ if(__HAL_PWR_GET_FLAG(PWR_FLAG_SB) != RESET) { __HAL_PWR_CLEAR_FLAG(PWR_FLAG_SB); /* Infinite loop */ while (1) { /* Toggle LED1 */ BSP_LED_Toggle(LED1); /* Insert a 100ms delay */ HAL_Delay(100); } } /* Configure USER Button */ BSP_PB_Init(BUTTON_KEY, BUTTON_MODE_GPIO); /* Wait until USER button is pressed to enter the Low Power mode */ while(BSP_PB_GetState(BUTTON_KEY) == RESET) { /* Toggle LED1 */ BSP_LED_Toggle(LED1); /* Insert 1s Delay */ HAL_Delay(1000); } /* Loop while USER Button is maintained pressed */ while(BSP_PB_GetState(BUTTON_KEY) != RESET) { } #if defined (SLEEP_MODE) /* Sleep Mode Entry - System Running at PLL (216 MHz) - Flash 5 wait state - Instruction and Data caches ON - Prefetch ON - Code running from Internal FLASH - All peripherals disabled. - Wake-up using EXTI Line (User Button) */ SleepMode_Measure(); #elif defined (STOP_MODE) /* STOP Mode Entry - RTC Clocked by LSI - Regulator in LP mode - HSI, HSE OFF and LSI OFF if not used as RTC Clock source - No IWDG - FLASH in deep power down mode - Automatic Wake-up using RTC clocked by LSI (after ~20s) */ StopMode_Measure(); #elif defined (STANDBY_MODE) /* STANDBY Mode Entry - Backup SRAM and RTC OFF - IWDG and LSI OFF - Wake-up using EXTI Line (User Button) */ StandbyMode_Measure(); #elif defined (STANDBY_RTC_MODE) /* STANDBY Mode with RTC on LSI Entry - RTC Clocked by LSI - IWDG OFF and LSI OFF if not used as RTC Clock source - Backup SRAM OFF - Automatic Wake-up using RTC clocked by LSI (after ~20s) */ StandbyRTCMode_Measure(); #elif defined (STANDBY_BKPSRAM_MODE) /* STANDBY Mode Entry - Backup SRAM ON - IWDG OFF - Automatic Wake-up using RTC ((after ~20s) */ StandbyBKPSRAMMode_Measure(); #endif if(uwCounter != 0) { BSP_LED_Init(LED1); } /* Infinite loop */ while (1) { } } /** * @brief System Clock Configuration * The system Clock is configured as follows: * System Clock source = PLL (HSE) * SYSCLK(Hz) = 216000000 * HCLK(Hz) = 216000000 * AHB Prescaler = 1 * APB1 Prescaler = 4 * APB2 Prescaler = 2 * HSE Frequency(Hz) = 8000000 * PLL_M = 8 * PLL_N = 432 * PLL_P = 2 * PLL_Q = 9 * PLL_R = 7 * VDD(V) = 3.3 * Main regulator output voltage = Scale1 mode * Flash Latency(WS) = 7 * @param None * @retval None */ static void SystemClock_Config(void) { RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct; HAL_StatusTypeDef ret = HAL_OK; /* Enable HSE Oscillator and activate PLL with HSE as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 8; RCC_OscInitStruct.PLL.PLLN = 432; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 9; ret = HAL_RCC_OscConfig(&RCC_OscInitStruct); if(ret != HAL_OK) { while(1) {}; } /* Activate the OverDrive to reach the 216 Mhz Frequency */ if(HAL_PWREx_EnableOverDrive() != HAL_OK) { while(1) {}; } /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_7); if(ret != HAL_OK) { while(1) {}; } } /** * @brief This function is executed in case of error occurrence. * @param None * @retval None */ void Error_Handler(void) { /* Turn LED3 on */ BSP_LED_On(LED3); while(1) { } } /** * @brief SYSTICK callback * @param None * @retval None */ void HAL_SYSTICK_Callback(void) { HAL_IncTick(); } /** * @brief Wake Up Timer callback * @param hrtc : hrtc handle * @retval None */ void HAL_RTCEx_WakeUpTimerEventCallback(RTC_HandleTypeDef *hrtc) { /* NOTE : add the specific code to handle the RTC wake up interrupt */ uwCounter = 1; } /** * @brief EXTI line detection callbacks * @param GPIO_Pin: Specifies the pins connected EXTI line * @retval None */ void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) { /* Configure LED1 */ BSP_LED_Init(LED1); /* NOTE : add the specific code to handle the wake up button interrupt */ if(GPIO_Pin == USER_BUTTON_PIN) { uwCounter = 2; } } /** * @brief CPU L1-Cache enable. * @param None * @retval None */ static void CPU_CACHE_Enable(void) { /* Enable I-Cache */ SCB_EnableICache(); /* Enable D-Cache */ SCB_EnableDCache(); } /** * @brief Configure the MPU attributes * @param None * @retval None */ static void MPU_Config(void) { MPU_Region_InitTypeDef MPU_InitStruct; /* Disable the MPU */ HAL_MPU_Disable(); /* Configure the MPU as Strongly ordered for not defined regions */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0x00; MPU_InitStruct.Size = MPU_REGION_SIZE_4GB; MPU_InitStruct.AccessPermission = MPU_REGION_NO_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER0; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.SubRegionDisable = 0x87; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_DISABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* Enable the MPU */ HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT); } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t* file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */