/** ****************************************************************************** * @file Examples_LL/CRC/CRC_UserDefinedPolynomial/Src/main.c * @author MCD Application Team * @brief This example describes how to use CRC peripheral for generating 8-bit CRC value * for an input data Buffer, based on a user defined polynomial value, * using the STM32F7xx CRC LL API. * Peripheral initialization done using LL unitary services functions. ****************************************************************************** * @attention * *

© Copyright (c) 2016 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F7xx_LL_Examples * @{ */ /** @addtogroup CRC_UserDefinedPolynomial * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ #define BUFFER_SIZE 39 /* 9 u32 + 1 u16 + 1 u8 */ /* 8-bit long user defined Polynomial value for this example In this example, the polynomial is set manually to 0x9B that is X^8 + X^7 + X^4 + X^3 + X + 1. */ #define CRC8_POLYNOMIAL_VALUE 0x9B /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Used for storing CRC Value */ __IO uint8_t ubCRCValue = 0; static const uint8_t aDataBuffer[BUFFER_SIZE] = { 0x21, 0x10, 0x00, 0x00, 0x63, 0x30, 0x42, 0x20, 0xa5, 0x50, 0x84, 0x40, 0xe7, 0x70, 0xc6, 0x60, 0x4a, 0xa1, 0x29, 0x91, 0x8c, 0xc1, 0x6b, 0xb1, 0xce, 0xe1, 0xad, 0xd1, 0x31, 0x12, 0xef, 0xf1, 0x52, 0x22, 0x73, 0x32, 0xa1, 0xb2, 0xc3 }; /* Expected CRC Value */ uint8_t ubExpectedCRCValue = 0xA6; /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); void Configure_CRC(void); uint8_t Calculate_CRC(uint32_t); void CheckCRCResultValue(void); void LED_Init(void); void LED_On(void); void LED_Blinking(uint32_t Period); static void CPU_CACHE_Enable(void); /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None */ int main(void) { /* Enable the CPU Cache */ CPU_CACHE_Enable(); /* Configure the system clock to 216 MHz */ SystemClock_Config(); /* Initialize LED1 */ LED_Init(); /* Configure CRC (CRC IP configuration using user-defined Polynomial value) */ Configure_CRC(); /* Perform CRC calculation on data contained in aDataBuffer */ ubCRCValue = Calculate_CRC(BUFFER_SIZE); /* Check if CRC computed result value is equal to expected one */ CheckCRCResultValue(); /* Infinite loop */ while (1) { } } /** * @brief This function configures CRC Instance. * @note This function is used to : * -1- Enable peripheral clock for CRC. * -2- Configure CRC functional parameters. * @note Peripheral configuration is minimal configuration from reset values. * Thus, some useless LL unitary functions calls below are provided as * commented examples - setting is default configuration from reset. * @param None * @retval None */ void Configure_CRC(void) { /* (1) Enable peripheral clock for CRC *********************/ LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_CRC); /* (2) Configure CRC functional parameters ********************************/ /* Configure CRC calculation unit with user defined polynomial value, 8-bit long */ LL_CRC_SetPolynomialCoef(CRC, CRC8_POLYNOMIAL_VALUE); LL_CRC_SetPolynomialSize(CRC, LL_CRC_POLYLENGTH_8B); /* Initialize default CRC initial value */ /* Reset value is LL_CRC_DEFAULT_CRC_INITVALUE */ // LL_CRC_SetInitialData(CRC, LL_CRC_DEFAULT_CRC_INITVALUE); /* Set input data inversion mode : No inversion*/ /* Reset value is LL_CRC_INDATA_REVERSE_NONE */ // LL_CRC_SetInputDataReverseMode(CRC, LL_CRC_INDATA_REVERSE_NONE); /* Set output data inversion mode : No inversion */ /* Reset value is LL_CRC_OUTDATA_REVERSE_NONE */ // LL_CRC_SetOutputDataReverseMode(CRC, LL_CRC_OUTDATA_REVERSE_NONE); } /** * @brief This function performs CRC calculation on BufferSize bytes from input data buffer aDataBuffer. * @param BufferSize Nb of bytes to be processed for CRC calculation * @retval 8-bit CRC value computed on input data buffer */ uint8_t Calculate_CRC(uint32_t BufferSize) { register uint32_t data = 0; register uint32_t index = 0; /* Compute the CRC of Data Buffer array*/ for (index = 0; index < (BufferSize / 4); index++) { data = (uint32_t)((aDataBuffer[4 * index + 3] << 24) | (aDataBuffer[4 * index + 2] << 16) | (aDataBuffer[4 * index + 1] << 8) | aDataBuffer[4 * index]); LL_CRC_FeedData32(CRC, data); } /* Last bytes specific handling */ if ((BUFFER_SIZE % 4) != 0) { if (BUFFER_SIZE % 4 == 1) { LL_CRC_FeedData8(CRC, aDataBuffer[4 * index]); } if (BUFFER_SIZE % 4 == 2) { LL_CRC_FeedData16(CRC, (uint16_t)((aDataBuffer[4 * index + 1]<<8) | aDataBuffer[4 * index])); } if (BUFFER_SIZE % 4 == 3) { LL_CRC_FeedData16(CRC, (uint16_t)((aDataBuffer[4 * index + 1]<<8) | aDataBuffer[4 * index])); LL_CRC_FeedData8(CRC, aDataBuffer[4 * index + 2]); } } /* Return computed CRC value */ return(LL_CRC_ReadData8(CRC)); } /** * @brief Check CRC computation result value. * @param None * @retval None */ void CheckCRCResultValue(void) { /* Compare the CRC value to the Expected one */ if (ubCRCValue != ubExpectedCRCValue) { /* Wrong CRC value: Set LED1 to Blinking mode (Error) */ LED_Blinking(LED_BLINK_ERROR); } else { /* Right CRC value: Turn LED1 on */ LED_On(); } } /** * @brief Initialize LED1. * @param None * @retval None */ void LED_Init(void) { /* Enable the LED1 Clock */ LED1_GPIO_CLK_ENABLE(); /* Configure IO in output push-pull mode to drive external LED1 */ LL_GPIO_SetPinMode(LED1_GPIO_PORT, LED1_PIN, LL_GPIO_MODE_OUTPUT); /* Reset value is LL_GPIO_OUTPUT_PUSHPULL */ //LL_GPIO_SetPinOutputType(LED1_GPIO_PORT, LED1_PIN, LL_GPIO_OUTPUT_PUSHPULL); /* Reset value is LL_GPIO_SPEED_FREQ_LOW */ //LL_GPIO_SetPinSpeed(LED1_GPIO_PORT, LED1_PIN, LL_GPIO_SPEED_FREQ_LOW); /* Reset value is LL_GPIO_PULL_NO */ //LL_GPIO_SetPinPull(LED1_GPIO_PORT, LED1_PIN, LL_GPIO_PULL_NO); } /** * @brief Turn-on LED1. * @param None * @retval None */ void LED_On(void) { /* Turn LED1 on */ LL_GPIO_SetOutputPin(LED1_GPIO_PORT, LED1_PIN); } /** * @brief Set LED1 to Blinking mode for an infinite loop (toggle period based on value provided as input parameter). * @param Period : Period of time (in ms) between each toggling of LED * This parameter can be user defined values. Pre-defined values used in that example are : * @arg LED_BLINK_FAST : Fast Blinking * @arg LED_BLINK_SLOW : Slow Blinking * @arg LED_BLINK_ERROR : Error specific Blinking * @retval None */ void LED_Blinking(uint32_t Period) { /* Toggle IO in an infinite loop */ while (1) { LL_GPIO_TogglePin(LED1_GPIO_PORT, LED1_PIN); LL_mDelay(Period); } } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 216000000 * HCLK(Hz) = 216000000 * AHB Prescaler = 1 * APB1 Prescaler = 4 * APB2 Prescaler = 2 * HSI Frequency(Hz) = 8000000 * PLL_M = 8 * PLL_N = 432 * PLL_P = 2 * VDD(V) = 3.3 * Main regulator output voltage = Scale1 mode * Flash Latency(WS) = 7 * @param None * @retval None */ void SystemClock_Config(void) { /* Enable HSE clock */ LL_RCC_HSE_EnableBypass(); LL_RCC_HSE_Enable(); while(LL_RCC_HSE_IsReady() != 1) { }; /* Set FLASH latency */ LL_FLASH_SetLatency(LL_FLASH_LATENCY_7); /* Enable PWR clock */ LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_PWR); /* Activation OverDrive Mode */ LL_PWR_EnableOverDriveMode(); while(LL_PWR_IsActiveFlag_OD() != 1) { }; /* Activation OverDrive Switching */ LL_PWR_EnableOverDriveSwitching(); while(LL_PWR_IsActiveFlag_ODSW() != 1) { }; /* Main PLL configuration and activation */ LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSE, LL_RCC_PLLM_DIV_8, 432, LL_RCC_PLLP_DIV_2); LL_RCC_PLL_Enable(); while(LL_RCC_PLL_IsReady() != 1) { }; /* Sysclk activation on the main PLL */ LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1); LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL); while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL) { }; /* Set APB1 & APB2 prescaler */ LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_4); LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_2); /* Set systick to 1ms */ SysTick_Config(216000000 / 1000); /* Update CMSIS variable (which can be updated also through SystemCoreClockUpdate function) */ SystemCoreClock = 216000000; } /** * @brief CPU L1-Cache enable. * @param None * @retval None */ static void CPU_CACHE_Enable(void) { /* Enable I-Cache */ SCB_EnableICache(); /* Enable D-Cache */ SCB_EnableDCache(); } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/