/**
******************************************************************************
* @file QSPI/QSPI_ReadWrite_IT/Src/main.c
* @author MCD Application Team
* @brief This example describes how to configure and use QuadSPI through
* the STM32F7xx HAL API.
******************************************************************************
* @attention
*
*
© Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F7xx_HAL_Examples
* @{
*/
/** @addtogroup QSPI_ReadWrite_IT
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
QSPI_HandleTypeDef QSPIHandle;
__IO uint8_t CmdCplt, RxCplt, TxCplt, StatusMatch, TimeOut;
/* Buffer used for transmission */
uint8_t aTxBuffer[] = " ****QSPI communication based on IT**** ****QSPI communication based on IT**** ****QSPI communication based on IT**** ****QSPI communication based on IT**** ****QSPI communication based on IT**** ****QSPI communication based on IT**** ";
/* Buffer used for reception */
uint8_t aRxBuffer[BUFFERSIZE];
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void Error_Handler(void);
static void QSPI_WriteEnable(QSPI_HandleTypeDef *hqspi);
static void QSPI_AutoPollingMemReady(QSPI_HandleTypeDef *hqspi);
static void QSPI_DummyCyclesCfg(QSPI_HandleTypeDef *hqspi);
static void CPU_CACHE_Enable(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
QSPI_CommandTypeDef sCommand;
uint32_t address = 0;
uint16_t index;
__IO uint8_t step = 0;
/* Enable the CPU Cache */
CPU_CACHE_Enable();
/* STM32F7xx HAL library initialization:
- Configure the Flash ART accelerator on ITCM interface
- Systick timer is configured by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
- Set NVIC Group Priority to 4
- Low Level Initialization
*/
HAL_Init();
/* Configure the system clock to 216 MHz */
SystemClock_Config();
BSP_LED_Init(LED1);
/* Initialize QuadSPI ------------------------------------------------------ */
QSPIHandle.Instance = QUADSPI;
HAL_QSPI_DeInit(&QSPIHandle);
/* ClockPrescaler set to 2, so QSPI clock = 216MHz / (2+1) = 72MHz */
QSPIHandle.Init.ClockPrescaler = 2;
QSPIHandle.Init.FifoThreshold = 4;
QSPIHandle.Init.SampleShifting = QSPI_SAMPLE_SHIFTING_HALFCYCLE;
QSPIHandle.Init.FlashSize = POSITION_VAL(0x1000000) - 1;
QSPIHandle.Init.ChipSelectHighTime = QSPI_CS_HIGH_TIME_2_CYCLE;
QSPIHandle.Init.ClockMode = QSPI_CLOCK_MODE_0;
QSPIHandle.Init.FlashID = QSPI_FLASH_ID_1;
QSPIHandle.Init.DualFlash = QSPI_DUALFLASH_DISABLE;
if (HAL_QSPI_Init(&QSPIHandle) != HAL_OK)
{
Error_Handler();
}
sCommand.InstructionMode = QSPI_INSTRUCTION_1_LINE;
sCommand.AddressSize = QSPI_ADDRESS_24_BITS;
sCommand.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
sCommand.DdrMode = QSPI_DDR_MODE_DISABLE;
sCommand.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
sCommand.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
while(1)
{
switch(step)
{
case 0:
CmdCplt = 0;
/* Initialize Reception buffer --------------------------------------- */
for (index = 0; index < BUFFERSIZE; index++)
{
aRxBuffer[index] = 0;
}
/* Enable write operations ------------------------------------------- */
QSPI_WriteEnable(&QSPIHandle);
/* Erasing Sequence -------------------------------------------------- */
sCommand.Instruction = SECTOR_ERASE_CMD;
sCommand.AddressMode = QSPI_ADDRESS_1_LINE;
sCommand.Address = address;
sCommand.DataMode = QSPI_DATA_NONE;
sCommand.DummyCycles = 0;
if (HAL_QSPI_Command_IT(&QSPIHandle, &sCommand) != HAL_OK)
{
Error_Handler();
}
step++;
break;
case 1:
if(CmdCplt != 0)
{
CmdCplt = 0;
StatusMatch = 0;
/* Configure automatic polling mode to wait for end of erase ------- */
QSPI_AutoPollingMemReady(&QSPIHandle);
step++;
}
break;
case 2:
if(StatusMatch != 0)
{
StatusMatch = 0;
TxCplt = 0;
/* Enable write operations ----------------------------------------- */
QSPI_WriteEnable(&QSPIHandle);
/* Writing Sequence ------------------------------------------------ */
sCommand.Instruction = QUAD_IN_FAST_PROG_CMD;
sCommand.AddressMode = QSPI_ADDRESS_1_LINE;
sCommand.DataMode = QSPI_DATA_4_LINES;
sCommand.NbData = BUFFERSIZE;
if (HAL_QSPI_Command(&QSPIHandle, &sCommand, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK)
{
Error_Handler();
}
if (HAL_QSPI_Transmit_IT(&QSPIHandle, aTxBuffer) != HAL_OK)
{
Error_Handler();
}
step++;
}
break;
case 3:
if(TxCplt != 0)
{
TxCplt = 0;
StatusMatch = 0;
/* Configure automatic polling mode to wait for end of program ----- */
QSPI_AutoPollingMemReady(&QSPIHandle);
step++;
}
break;
case 4:
if(StatusMatch != 0)
{
StatusMatch = 0;
RxCplt = 0;
/* Configure Volatile Configuration register (with new dummy cycles) */
QSPI_DummyCyclesCfg(&QSPIHandle);
/* Reading Sequence ------------------------------------------------ */
sCommand.Instruction = QUAD_OUT_FAST_READ_CMD;
sCommand.DummyCycles = DUMMY_CLOCK_CYCLES_READ_QUAD;
if (HAL_QSPI_Command(&QSPIHandle, &sCommand, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK)
{
Error_Handler();
}
if (HAL_QSPI_Receive_IT(&QSPIHandle, aRxBuffer) != HAL_OK)
{
Error_Handler();
}
step++;
}
break;
case 5:
if (RxCplt != 0)
{
RxCplt = 0;
/* Result comparison ----------------------------------------------- */
for (index = 0; index < BUFFERSIZE; index++)
{
if (aRxBuffer[index] != aTxBuffer[index])
{
Error_Handler();
}
}
BSP_LED_On(LED1);
address += QSPI_PAGE_SIZE;
if(address >= QSPI_END_ADDR)
{
address = 0;
}
step = 0;
}
break;
default :
Error_Handler();
}
}
}
/**
* @brief Command completed callbacks.
* @param hqspi: QSPI handle
* @retval None
*/
void HAL_QSPI_CmdCpltCallback(QSPI_HandleTypeDef *hqspi)
{
CmdCplt++;
}
/**
* @brief Rx Transfer completed callbacks.
* @param hqspi: QSPI handle
* @retval None
*/
void HAL_QSPI_RxCpltCallback(QSPI_HandleTypeDef *hqspi)
{
RxCplt++;
}
/**
* @brief Tx Transfer completed callbacks.
* @param hqspi: QSPI handle
* @retval None
*/
void HAL_QSPI_TxCpltCallback(QSPI_HandleTypeDef *hqspi)
{
TxCplt++;
}
/**
* @brief Status Match callbacks
* @param hqspi: QSPI handle
* @retval None
*/
void HAL_QSPI_StatusMatchCallback(QSPI_HandleTypeDef *hqspi)
{
StatusMatch++;
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 216000000
* HCLK(Hz) = 216000000
* AHB Prescaler = 1
* APB1 Prescaler = 4
* APB2 Prescaler = 2
* HSE Frequency(Hz) = 25000000
* PLL_M = 25
* PLL_N = 432
* PLL_P = 2
* PLL_Q = 9
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 7
* @param None
* @retval None
*/
void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
HAL_StatusTypeDef ret = HAL_OK;
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 25;
RCC_OscInitStruct.PLL.PLLN = 432;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 9;
ret = HAL_RCC_OscConfig(&RCC_OscInitStruct);
if(ret != HAL_OK)
{
while(1) { ; }
}
/* Activate the OverDrive to reach the 216 MHz Frequency */
ret = HAL_PWREx_EnableOverDrive();
if(ret != HAL_OK)
{
while(1) { ; }
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_7);
if(ret != HAL_OK)
{
while(1) { ; }
}
}
/**
* @brief This function sends a Write Enable and waits until it is effective.
* @param hqspi: QSPI handle
* @retval None
*/
static void QSPI_WriteEnable(QSPI_HandleTypeDef *hqspi)
{
QSPI_CommandTypeDef sCommand;
QSPI_AutoPollingTypeDef sConfig;
/* Enable write operations ------------------------------------------ */
sCommand.InstructionMode = QSPI_INSTRUCTION_1_LINE;
sCommand.Instruction = WRITE_ENABLE_CMD;
sCommand.AddressMode = QSPI_ADDRESS_NONE;
sCommand.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
sCommand.DataMode = QSPI_DATA_NONE;
sCommand.DummyCycles = 0;
sCommand.DdrMode = QSPI_DDR_MODE_DISABLE;
sCommand.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
sCommand.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
if (HAL_QSPI_Command(&QSPIHandle, &sCommand, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK)
{
Error_Handler();
}
/* Configure automatic polling mode to wait for write enabling ---- */
sConfig.Match = 0x02;
sConfig.Mask = 0x02;
sConfig.MatchMode = QSPI_MATCH_MODE_AND;
sConfig.StatusBytesSize = 1;
sConfig.Interval = 0x10;
sConfig.AutomaticStop = QSPI_AUTOMATIC_STOP_ENABLE;
sCommand.Instruction = READ_STATUS_REG_CMD;
sCommand.DataMode = QSPI_DATA_1_LINE;
if (HAL_QSPI_AutoPolling(&QSPIHandle, &sCommand, &sConfig, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief This function reads the SR of the memory and awaits the EOP.
* @param hqspi: QSPI handle
* @retval None
*/
static void QSPI_AutoPollingMemReady(QSPI_HandleTypeDef *hqspi)
{
QSPI_CommandTypeDef sCommand;
QSPI_AutoPollingTypeDef sConfig;
/* Configure automatic polling mode to wait for memory ready ------ */
sCommand.InstructionMode = QSPI_INSTRUCTION_1_LINE;
sCommand.Instruction = READ_STATUS_REG_CMD;
sCommand.AddressMode = QSPI_ADDRESS_NONE;
sCommand.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
sCommand.DataMode = QSPI_DATA_1_LINE;
sCommand.DummyCycles = 0;
sCommand.DdrMode = QSPI_DDR_MODE_DISABLE;
sCommand.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
sCommand.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
sConfig.Match = 0x00;
sConfig.Mask = 0x01;
sConfig.MatchMode = QSPI_MATCH_MODE_AND;
sConfig.StatusBytesSize = 1;
sConfig.Interval = 0x10;
sConfig.AutomaticStop = QSPI_AUTOMATIC_STOP_ENABLE;
if (HAL_QSPI_AutoPolling_IT(&QSPIHandle, &sCommand, &sConfig) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief This function configures the dummy cycles on memory side.
* @param hqspi: QSPI handle
* @retval None
*/
static void QSPI_DummyCyclesCfg(QSPI_HandleTypeDef *hqspi)
{
QSPI_CommandTypeDef sCommand;
uint8_t reg;
/* Read Volatile Configuration register --------------------------- */
sCommand.InstructionMode = QSPI_INSTRUCTION_1_LINE;
sCommand.Instruction = READ_VOL_CFG_REG_CMD;
sCommand.AddressMode = QSPI_ADDRESS_NONE;
sCommand.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
sCommand.DataMode = QSPI_DATA_1_LINE;
sCommand.DummyCycles = 0;
sCommand.DdrMode = QSPI_DDR_MODE_DISABLE;
sCommand.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
sCommand.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
sCommand.NbData = 1;
if (HAL_QSPI_Command(&QSPIHandle, &sCommand, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK)
{
Error_Handler();
}
if (HAL_QSPI_Receive(&QSPIHandle, ®, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK)
{
Error_Handler();
}
/* Enable write operations ---------------------------------------- */
QSPI_WriteEnable(&QSPIHandle);
/* Write Volatile Configuration register (with new dummy cycles) -- */
sCommand.Instruction = WRITE_VOL_CFG_REG_CMD;
MODIFY_REG(reg, 0xF0, (DUMMY_CLOCK_CYCLES_READ_QUAD << POSITION_VAL(0xF0)));
if (HAL_QSPI_Command(&QSPIHandle, &sCommand, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK)
{
Error_Handler();
}
if (HAL_QSPI_Transmit(&QSPIHandle, ®, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* User may add here some code to deal with this error */
while(1)
{
}
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @brief CPU L1-Cache enable.
* @param None
* @retval None
*/
static void CPU_CACHE_Enable(void)
{
/* Enable I-Cache */
SCB_EnableICache();
/* Enable D-Cache */
SCB_EnableDCache();
}
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/