2019-08-05 13:05:39 +01:00

364 lines
13 KiB
C

/**
******************************************************************************
* @file TIM/TIM_OCToggle/Src/main.c
* @author MCD Application Team
* @brief This sample code shows how to use STM32F4xx TIM HAL API to generate
* 4 signals in PWM.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F4xx_HAL_Examples
* @{
*/
/** @addtogroup TIM_OCToggle
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
__IO uint32_t uhCCR1_Val = 40961;
__IO uint32_t uhCCR2_Val = 20480;
__IO uint32_t uhCCR3_Val = 10240;
__IO uint32_t uhCCR4_Val = 5120;
uint32_t uhCapture = 0;
/* Timer handler declaration */
TIM_HandleTypeDef TimHandle;
/* Timer Output Compare Configuration Structure declaration */
TIM_OC_InitTypeDef sConfig;
/* Counter Prescaler value */
uint32_t uwPrescalerValue = 0;
/* Private function prototypes -----------------------------------------------*/
static void SystemClock_Config(void);
static void Error_Handler(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/* STM32F4xx HAL library initialization:
- Configure the Flash prefetch, instruction and Data caches
- Configure the Systick to generate an interrupt each 1 msec
- Set NVIC Group Priority to 4
- Global MSP (MCU Support Package) initialization
*/
HAL_Init();
/* Configure the system clock to 180 MHz */
SystemClock_Config();
/* Configure LED1 and LED3 */
BSP_LED_Init(LED1);
BSP_LED_Init(LED3);
/*##-1- Configure the TIM peripheral #######################################*/
/* ---------------------------------------------------------------------------
TIM3 Configuration: Output Compare Toggle Mode:
In this example TIM3 input clock (TIM3CLK) is set to 2 * APB1 clock (PCLK1),
since APB1 prescaler is different from 1.
TIM3CLK = 2 * PCLK1
PCLK1 = HCLK / 4
=> TIM3CLK = HCLK / 2 = SystemCoreClock /2
To get TIM3 counter clock at 18 MHz, the prescaler is computed as follows:
Prescaler = (TIM3CLK / TIM3 counter clock) - 1
Prescaler = ((SystemCoreClock /2) /18 MHz) - 1
CC1 update rate = TIM3 counter clock / uhCCR1_Val = 439.44 Hz
==> So the TIM3 Channel 1 generates a periodic signal with a
frequency equal to 219.72 Hz.
CC2 update rate = TIM3 counter clock / uhCCR2_Val = 878.9 Hz
==> So the TIM3 Channel 2 generates a periodic signal with a
frequency equal to 439.45 Hz.
CC3 update rate = TIM3 counter clock / uhCCR3_Val = 1757.81 Hz
==> So the TIM3 Channel 3 generates a periodic signal with a
frequency equal to 878.9 Hz.
CC4 update rate = TIM3 counter clock / uhCCR4_Val = 3515.62 Hz
==> So the TIM3 Channel 4 generates a periodic signal with a
frequency equal to 1757.81 Hz.
Note:
SystemCoreClock variable holds HCLK frequency and is defined in system_stm32f4xx.c file.
Each time the core clock (HCLK) changes, user had to update SystemCoreClock
variable value. Otherwise, any configuration based on this variable will be incorrect.
This variable is updated in three ways:
1) by calling CMSIS function SystemCoreClockUpdate()
2) by calling HAL API function HAL_RCC_GetSysClockFreq()
3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency
--------------------------------------------------------------------------- */
/* Compute the prescaler value to have TIMx counter clock equal to 21 MHz */
uwPrescalerValue = (uint32_t)(((SystemCoreClock /2) / 18000000) - 1);
/* Initialize TIMx peripheral as follow:
+ Prescaler = ((SystemCoreClock /2) / 18000000) - 1
+ Period = 65535
+ ClockDivision = 0
+ Counter direction = Up
*/
TimHandle.Instance = TIMx;
TimHandle.Init.Period = 65535;
TimHandle.Init.Prescaler = uwPrescalerValue;
TimHandle.Init.ClockDivision = 0;
TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP;
TimHandle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if(HAL_TIM_OC_Init(&TimHandle) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/*##-2- Configure the Output Compare channels ##############################*/
/* Output Compare Toggle Mode configuration: Channel1 */
sConfig.OCMode = TIM_OCMODE_TOGGLE;
sConfig.Pulse = uhCCR1_Val;
sConfig.OCPolarity = TIM_OCPOLARITY_LOW;
if(HAL_TIM_OC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_1) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/* Output Compare Toggle Mode configuration: Channel2 */
sConfig.Pulse = uhCCR2_Val;
if(HAL_TIM_OC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_2) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/* Output Compare Toggle Mode configuration: Channel3 */
sConfig.Pulse = uhCCR3_Val;
if(HAL_TIM_OC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_3) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/* Output Compare Toggle Mode configuration: Channel4 */
sConfig.Pulse = uhCCR4_Val;
if(HAL_TIM_OC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_4) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/*##-3- Start signals generation ###########################################*/
/* Start channel 1 in Output compare mode */
if(HAL_TIM_OC_Start_IT(&TimHandle, TIM_CHANNEL_1) != HAL_OK)
{
/* Starting Error */
Error_Handler();
}
/* Start channel 2 in Output compare mode */
if(HAL_TIM_OC_Start_IT(&TimHandle, TIM_CHANNEL_2) != HAL_OK)
{
/* Starting Error */
Error_Handler();
}
/* Start channel 3 in Output compare mode */
if(HAL_TIM_OC_Start_IT(&TimHandle, TIM_CHANNEL_3) != HAL_OK)
{
/* Starting Error */
Error_Handler();
}
/* Start channel 4 in Output compare mode */
if(HAL_TIM_OC_Start_IT(&TimHandle, TIM_CHANNEL_4) != HAL_OK)
{
/* Starting Error */
Error_Handler();
}
/* Infinite loop */
while (1)
{
}
}
/**
* @brief Output Compare callback in non blocking mode
* @param htim: TIM OC handle
* @retval None
*/
void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim)
{
/* TIM3_CH1 toggling with frequency = 256.35 Hz */
if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1)
{
uhCapture = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1);
/* Set the Capture Compare Register value */
__HAL_TIM_SET_COMPARE(&TimHandle, TIM_CHANNEL_1, (uhCapture + uhCCR1_Val));
}
/* TIM3_CH2 toggling with frequency = 256.35 Hz */
if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2)
{
uhCapture = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
/* Set the Capture Compare Register value */
__HAL_TIM_SET_COMPARE(&TimHandle, TIM_CHANNEL_2, (uhCapture + uhCCR2_Val));
}
/* TIM3_CH3 toggling with frequency = 256.35 Hz */
if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_3)
{
uhCapture = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_3);
/* Set the Capture Compare Register value */
__HAL_TIM_SET_COMPARE(&TimHandle, TIM_CHANNEL_3, (uhCapture + uhCCR3_Val));
}
/* TIM3_CH4 toggling with frequency = 256.35 Hz */
if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_4)
{
uhCapture = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_4);
/* Set the Capture Compare Register value */
__HAL_TIM_SET_COMPARE(&TimHandle, TIM_CHANNEL_4, (uhCapture + uhCCR4_Val));
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* Turn LED3 on */
BSP_LED_On(LED3);
while(1)
{
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 180000000
* HCLK(Hz) = 180000000
* AHB Prescaler = 1
* APB1 Prescaler = 4
* APB2 Prescaler = 2
* HSE Frequency(Hz) = 25000000
* PLL_M = 25
* PLL_N = 360
* PLL_P = 2
* PLL_Q = 7
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 5
* @param None
* @retval None
*/
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
/* Enable Power Control clock */
__HAL_RCC_PWR_CLK_ENABLE();
/* The voltage scaling allows optimizing the power consumption when the device is
clocked below the maximum system frequency, to update the voltage scaling value
regarding system frequency refer to product datasheet. */
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 25;
RCC_OscInitStruct.PLL.PLLN = 360;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
HAL_RCC_OscConfig(&RCC_OscInitStruct);
/* Activate the Over-Drive mode */
HAL_PWREx_EnableOverDrive();
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5);
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/