2019-08-05 13:05:39 +01:00

375 lines
13 KiB
C

/**
******************************************************************************
* @file ADC/ADC_TripleModeInterleaved/Src/main.c
* @author MCD Application Team
* @brief This example provides a short description of how to use the ADC
* peripheral to convert a regular channel in Triple interleaved mode.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F4xx_HAL_Examples
* @{
*/
/** @addtogroup ADC_TripleModeInterleaved
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* ADC handler declaration */
ADC_HandleTypeDef AdcHandle1;
ADC_HandleTypeDef AdcHandle2;
ADC_HandleTypeDef AdcHandle3;
/* Variable used to get converted value */
__IO uint32_t aADCTripleConvertedValue[3];
/* Private function prototypes -----------------------------------------------*/
static void SystemClock_Config(void);
static void Error_Handler(void);
static void ADC_Config(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program.
* @param None
* @retval None
*/
int main(void)
{
/* STM32F4xx HAL library initialization:
- Configure the Flash prefetch, instruction and Data caches
- Systick timer is configured by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
- Set NVIC Group Priority to 4
- Low Level Initialization: global MSP (MCU Support Package) initialization
*/
HAL_Init();
/* Configure the system clock to 144 MHz */
SystemClock_Config();
/* Configure LED1 and LED3 */
BSP_LED_Init(LED1);
BSP_LED_Init(LED3);
/*##-1- Configure ADC1, ADC2 and ADC3 peripherals ################################*/
ADC_Config();
/*##-2- Enable ADC3 ########################################################*/
if(HAL_ADC_Start(&AdcHandle3) != HAL_OK)
{
/* Start Error */
Error_Handler();
}
/*##-3- Enable ADC2 ########################################################*/
if (HAL_ADC_Start(&AdcHandle2) != HAL_OK)
{
/* Start Error */
Error_Handler();
}
/*##-4- Start ADC1 and ADC2 multimode conversion process and enable DMA ####*/
/* Note: Considering IT occurring after each number of ADC conversions */
/* (IT by DMA end of transfer), select sampling time and ADC clock */
/* with sufficient duration to not create an overhead situation in */
/* IRQHandler. */
if (HAL_ADCEx_MultiModeStart_DMA(&AdcHandle1, (uint32_t *)aADCTripleConvertedValue, 3) != HAL_OK)
{
/* Start Error */
Error_Handler();
}
/* Infinite loop */
while (1)
{
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 144000000
* HCLK(Hz) = 144000000
* AHB Prescaler = 1
* APB1 Prescaler = 4
* APB2 Prescaler = 2
* HSE Frequency(Hz) = 25000000
* PLL_M = 25
* PLL_N = 288
* PLL_P = 2
* PLL_Q = 7
* VDD(V) = 3.3
* Main regulator output voltage = Scale2 mode
* Flash Latency(WS) = 5
* @param None
* @retval None
*/
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
HAL_StatusTypeDef ret = HAL_OK;
/* Enable Power Control clock */
__HAL_RCC_PWR_CLK_ENABLE();
/* The voltage scaling allows optimizing the power consumption when the device is
clocked below the maximum system frequency, to update the voltage scaling value
regarding system frequency refer to product datasheet. */
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 25;
RCC_OscInitStruct.PLL.PLLN = 288;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
RCC_OscInitStruct.PLL.PLLR = 2;
ret = HAL_RCC_OscConfig(&RCC_OscInitStruct);
if(ret != HAL_OK)
{
while(1) { ; }
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5);
if(ret != HAL_OK)
{
while(1) { ; }
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* Turn LED3 on */
BSP_LED_On(LED3);
while (1)
{
}
}
/**
* @brief ADC configuration
* @note This function Configure the ADC peripheral
1) Enable peripheral clocks
2) Configure ADC Channel 12 pin as analog input
3) DMA2_Stream0 channel2 configuration
4) Configure ADC1 Channel 12
5) Configure ADC2 Channel 12
* @param None
* @retval None
*/
static void ADC_Config(void)
{
ADC_ChannelConfTypeDef sConfig;
ADC_MultiModeTypeDef mode;
/*##-1- Configure the ADC2 peripheral ######################################*/
AdcHandle3.Instance = ADCz;
AdcHandle3.Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIV2;
AdcHandle3.Init.ScanConvMode = DISABLE;
AdcHandle3.Init.ContinuousConvMode = ENABLE;
AdcHandle3.Init.DiscontinuousConvMode = DISABLE;
AdcHandle3.Init.NbrOfDiscConversion = 0;
AdcHandle3.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
AdcHandle3.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1;
AdcHandle3.Init.DataAlign = ADC_DATAALIGN_RIGHT;
AdcHandle3.Init.NbrOfConversion = 1;
AdcHandle3.Init.DMAContinuousRequests = DISABLE;
AdcHandle3.Init.EOCSelection = DISABLE;
AdcHandle3.Init.Resolution = ADC_RESOLUTION_12B;
if (HAL_ADC_Init(&AdcHandle3) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/*##-2- Configure ADC3 regular channel #####################################*/
sConfig.Channel = ADCxyz_CHANNEL;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
sConfig.Offset = 0;
if(HAL_ADC_ConfigChannel(&AdcHandle3, &sConfig) != HAL_OK)
{
/* Channel Configuration Error */
Error_Handler();
}
/*##-3- Configure the ADC2 peripheral ######################################*/
AdcHandle2.Instance = ADCy;
AdcHandle2.Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIV2;
AdcHandle2.Init.ScanConvMode = DISABLE;
AdcHandle2.Init.ContinuousConvMode = ENABLE;
AdcHandle2.Init.DiscontinuousConvMode = DISABLE;
AdcHandle2.Init.NbrOfDiscConversion = 0;
AdcHandle2.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
AdcHandle2.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1;
AdcHandle2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
AdcHandle2.Init.NbrOfConversion = 1;
AdcHandle2.Init.DMAContinuousRequests = DISABLE;
AdcHandle2.Init.EOCSelection = DISABLE;
AdcHandle2.Init.Resolution = ADC_RESOLUTION_12B;
if (HAL_ADC_Init(&AdcHandle2) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/*##-4- Configure ADC2 regular channel #####################################*/
sConfig.Channel = ADCxyz_CHANNEL;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
sConfig.Offset = 0;
if (HAL_ADC_ConfigChannel(&AdcHandle2, &sConfig) != HAL_OK)
{
/* Channel Configuration Error */
Error_Handler();
}
/*##-5- Configure the ADC1 peripheral ######################################*/
AdcHandle1.Instance = ADCx;
AdcHandle1.Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIV2;
AdcHandle1.Init.ScanConvMode = DISABLE;
AdcHandle1.Init.ContinuousConvMode = ENABLE;
AdcHandle1.Init.DiscontinuousConvMode = DISABLE;
AdcHandle1.Init.NbrOfDiscConversion = 0;
AdcHandle1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
AdcHandle1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1;
AdcHandle1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
AdcHandle1.Init.NbrOfConversion = 1;
AdcHandle1.Init.DMAContinuousRequests = ENABLE;
AdcHandle1.Init.EOCSelection = DISABLE;
AdcHandle1.Init.Resolution = ADC_RESOLUTION_12B;
if (HAL_ADC_Init(&AdcHandle1) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/*##-6- Configure ADC1 regular channel #####################################*/
if (HAL_ADC_ConfigChannel(&AdcHandle1, &sConfig) != HAL_OK)
{
/* Channel Configuration Error */
Error_Handler();
}
/*##-7- Configure Multimode ################################################*/
mode.Mode = ADC_TRIPLEMODE_INTERL;
mode.DMAAccessMode = ADC_DMAACCESSMODE_2;
mode.TwoSamplingDelay = ADC_TWOSAMPLINGDELAY_5CYCLES;
if (HAL_ADCEx_MultiModeConfigChannel(&AdcHandle1, &mode) != HAL_OK)
{
/* Multimode Configuration Error */
Error_Handler();
}
}
/**
* @brief Conversion complete callback in non blocking mode
* @param hadc : hadc handle
* @note This example shows a simple way to report end of conversion, and
* you can add your own implementation.
* @retval None
*/
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
{
/* Turn LED1 on: Transfer process is correct */
BSP_LED_On(LED1);
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/