mirror of
https://github.com/STMicroelectronics/STM32CubeF4.git
synced 2025-04-30 13:48:52 +08:00
360 lines
11 KiB
C
360 lines
11 KiB
C
/**
|
|
******************************************************************************
|
|
* @file IWDG/IWDG_Example/Src/main.c
|
|
* @author MCD Application Team
|
|
* @brief This sample code shows how to use the STM32F412xG IWDG HAL API
|
|
* to update at regular period the IWDG counter and how to simulate a
|
|
* software fault generating an MCU IWDG reset on expiry of a
|
|
* programmed time period.
|
|
******************************************************************************
|
|
* @attention
|
|
*
|
|
* Copyright (c) 2017 STMicroelectronics.
|
|
* All rights reserved.
|
|
*
|
|
* This software is licensed under terms that can be found in the LICENSE file
|
|
* in the root directory of this software component.
|
|
* If no LICENSE file comes with this software, it is provided AS-IS.
|
|
*
|
|
******************************************************************************
|
|
*/
|
|
|
|
/* Includes ------------------------------------------------------------------*/
|
|
#include "main.h"
|
|
|
|
/** @addtogroup STM32F4xx_HAL_Examples
|
|
* @{
|
|
*/
|
|
|
|
/** @addtogroup IWDG_Example
|
|
* @{
|
|
*/
|
|
|
|
/* Private typedef -----------------------------------------------------------*/
|
|
/* Private define ------------------------------------------------------------*/
|
|
/* Private macro -------------------------------------------------------------*/
|
|
/* Private variables ---------------------------------------------------------*/
|
|
/* IWDG and TIM handlers declaration */
|
|
IWDG_HandleTypeDef IwdgHandle;
|
|
TIM_HandleTypeDef TimInputCaptureHandle;
|
|
RCC_ClkInitTypeDef RCC_ClockFreq;
|
|
|
|
static __IO uint32_t uwLsiFreq = 0;
|
|
__IO uint32_t uwCaptureNumber = 0;
|
|
__IO uint32_t uwPeriodValue = 0;
|
|
__IO uint32_t uwMeasurementDone = 0;
|
|
|
|
uint16_t tmpCC4[2] = {0, 0};
|
|
|
|
/* Private function prototypes -----------------------------------------------*/
|
|
static void SystemClock_Config(void);
|
|
static void Error_Handler(void);
|
|
static uint32_t GetLSIFrequency(void);
|
|
|
|
/* Private functions ---------------------------------------------------------*/
|
|
|
|
/**
|
|
* @brief Main program.
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
int main(void)
|
|
{
|
|
/* STM32F4xx HAL library initialization:
|
|
- Configure the Flash prefetch
|
|
- Systick timer is configured by default as source of time base, but user
|
|
can eventually implement his proper time base source (a general purpose
|
|
timer for example or other time source), keeping in mind that Time base
|
|
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
|
|
handled in milliseconds basis.
|
|
- Set NVIC Group Priority to 4
|
|
- Low Level Initialization
|
|
*/
|
|
HAL_Init();
|
|
|
|
/* Configure the system clock to 100 MHz */
|
|
SystemClock_Config();
|
|
|
|
/* Configure LED1, LED2, LED3 and Joystick sel-button */
|
|
BSP_LED_Init(LED1);
|
|
BSP_LED_Init(LED2);
|
|
BSP_LED_Init(LED3);
|
|
|
|
/* Configure Joystick sel-button */
|
|
BSP_PB_Init(BUTTON_WAKEUP, BUTTON_MODE_EXTI);
|
|
/*##-1- Check if the system has resumed from IWDG reset ####################*/
|
|
if (__HAL_RCC_GET_FLAG(RCC_FLAG_IWDGRST) != RESET)
|
|
{
|
|
/* IWDGRST flag set: Turn LED1 on */
|
|
BSP_LED_On(LED1);
|
|
|
|
/* Clear reset flags */
|
|
__HAL_RCC_CLEAR_RESET_FLAGS();
|
|
}
|
|
else
|
|
{
|
|
/* IWDGRST flag is not set: Turn LED1 off */
|
|
BSP_LED_Off(LED1);
|
|
}
|
|
|
|
/*##-2- Get the LSI frequency: TIM5 is used to measure the LSI frequency ###*/
|
|
uwLsiFreq = GetLSIFrequency();
|
|
|
|
/*##-3- Configure the IWDG peripheral ######################################*/
|
|
/* Set counter reload value to obtain 250ms IWDG TimeOut.
|
|
IWDG counter clock Frequency = LsiFreq / 32
|
|
Counter Reload Value = 250ms / IWDG counter clock period
|
|
= 0.25s / (32/LsiFreq)
|
|
= LsiFreq / (32 * 4)
|
|
= LsiFreq / 128 */
|
|
IwdgHandle.Instance = IWDG;
|
|
|
|
IwdgHandle.Init.Prescaler = IWDG_PRESCALER_32;
|
|
IwdgHandle.Init.Reload = uwLsiFreq / 128;
|
|
|
|
if (HAL_IWDG_Init(&IwdgHandle) != HAL_OK)
|
|
{
|
|
/* Initialization Error */
|
|
Error_Handler();
|
|
}
|
|
|
|
/* Infinite loop */
|
|
while (1)
|
|
{
|
|
/* Toggle LED2 */
|
|
BSP_LED_Toggle(LED2);
|
|
|
|
/* Insert 240 ms delay */
|
|
HAL_Delay(240);
|
|
|
|
/* Refresh IWDG: reload counter */
|
|
if (HAL_IWDG_Refresh(&IwdgHandle) != HAL_OK)
|
|
{
|
|
/* Refresh Error */
|
|
Error_Handler();
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Configures TIM5 to measure the LSI oscillator frequency.
|
|
* @param None
|
|
* @retval LSI Frequency
|
|
*/
|
|
static uint32_t GetLSIFrequency(void)
|
|
{
|
|
uint32_t pclk1 = 0, latency = 0;
|
|
TIM_IC_InitTypeDef timinputconfig = {0};
|
|
RCC_OscInitTypeDef oscinit = {0};
|
|
RCC_ClkInitTypeDef clkinit = {0};
|
|
|
|
/* Enable LSI Oscillator */
|
|
oscinit.OscillatorType = RCC_OSCILLATORTYPE_LSI;
|
|
oscinit.LSIState = RCC_LSI_ON;
|
|
oscinit.PLL.PLLState = RCC_PLL_NONE;
|
|
if (HAL_RCC_OscConfig(&oscinit)!= HAL_OK)
|
|
{
|
|
Error_Handler();
|
|
}
|
|
|
|
/* Configure the TIM peripheral */
|
|
/* Set TIMx instance */
|
|
TimInputCaptureHandle.Instance = TIMx;
|
|
|
|
/* TIMx configuration: Input Capture mode ---------------------
|
|
The LSI clock is connected to TIM5 CH4.
|
|
The Rising edge is used as active edge.
|
|
The TIM5 CCR4 is used to compute the frequency value.
|
|
------------------------------------------------------------ */
|
|
TimInputCaptureHandle.Init.Prescaler = 0;
|
|
TimInputCaptureHandle.Init.CounterMode = TIM_COUNTERMODE_UP;
|
|
TimInputCaptureHandle.Init.Period = 0xFFFF;
|
|
TimInputCaptureHandle.Init.ClockDivision = 0;
|
|
TimInputCaptureHandle.Init.RepetitionCounter = 0;
|
|
|
|
if (HAL_TIM_IC_Init(&TimInputCaptureHandle) != HAL_OK)
|
|
{
|
|
/* Initialization Error */
|
|
Error_Handler();
|
|
}
|
|
/* Connect internally the TIM5 CH4 Input Capture to the LSI clock output */
|
|
HAL_TIMEx_RemapConfig(&TimInputCaptureHandle, TIMx_REMAP);
|
|
|
|
/* Configure the Input Capture of channel 4 */
|
|
timinputconfig.ICPolarity = TIM_ICPOLARITY_RISING;
|
|
timinputconfig.ICSelection = TIM_ICSELECTION_DIRECTTI;
|
|
timinputconfig.ICPrescaler = TIM_ICPSC_DIV8;
|
|
timinputconfig.ICFilter = 0;
|
|
|
|
if (HAL_TIM_IC_ConfigChannel(&TimInputCaptureHandle, &timinputconfig, TIM_CHANNEL_4) != HAL_OK)
|
|
{
|
|
/* Initialization Error */
|
|
Error_Handler();
|
|
}
|
|
|
|
/* Reset the flags */
|
|
TimInputCaptureHandle.Instance->SR = 0;
|
|
|
|
/* Start the TIM Input Capture measurement in interrupt mode */
|
|
if (HAL_TIM_IC_Start_IT(&TimInputCaptureHandle, TIM_CHANNEL_4) != HAL_OK)
|
|
{
|
|
/* Starting Error */
|
|
Error_Handler();
|
|
}
|
|
|
|
/* Wait until the TIM5 get 2 LSI edges (refer to TIM5_IRQHandler() in
|
|
stm32f4xx_it.c file) */
|
|
while (uwMeasurementDone == 0)
|
|
{
|
|
}
|
|
uwCaptureNumber = 0;
|
|
|
|
/* Deinitialize the TIM5 peripheral registers to their default reset values */
|
|
HAL_TIM_IC_DeInit(&TimInputCaptureHandle);
|
|
|
|
/* Compute the LSI frequency, depending on TIM5 input clock frequency (PCLK1)*/
|
|
/* Get PCLK1 frequency */
|
|
pclk1 = HAL_RCC_GetPCLK1Freq();
|
|
HAL_RCC_GetClockConfig(&clkinit, &latency);
|
|
|
|
/* Get PCLK1 prescaler */
|
|
if ((clkinit.APB1CLKDivider) == RCC_HCLK_DIV1)
|
|
{
|
|
/* PCLK1 prescaler equal to 1 => TIMCLK = PCLK1 */
|
|
return ((pclk1 * 8) / uwPeriodValue);
|
|
}
|
|
else
|
|
{
|
|
/* PCLK1 prescaler different from 1 => TIMCLK = 2 * PCLK1 */
|
|
return (((2 * pclk1) * 8) / uwPeriodValue) ;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Input Capture callback in non blocking mode
|
|
* @param htim : TIM IC handle
|
|
* @retval None
|
|
*/
|
|
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
|
|
{
|
|
/* Get the Input Capture value */
|
|
tmpCC4[uwCaptureNumber++] = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_4);
|
|
|
|
if (uwCaptureNumber >= 2)
|
|
{
|
|
/* Compute the period length */
|
|
uwPeriodValue = (uint16_t)(0xFFFF - tmpCC4[0] + tmpCC4[1] + 1);
|
|
uwMeasurementDone = 1;
|
|
uwCaptureNumber = 0;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief This function is executed in case of error occurrence.
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
static void Error_Handler(void)
|
|
{
|
|
/* Turn LED3 on */
|
|
BSP_LED_On(LED3);
|
|
while (1)
|
|
{
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief System Clock Configuration
|
|
* The system Clock is configured as follow :
|
|
* System Clock source = PLL (HSE)
|
|
* SYSCLK(Hz) = 100000000
|
|
* HCLK(Hz) = 100000000
|
|
* AHB Prescaler = 1
|
|
* APB1 Prescaler = 2
|
|
* APB2 Prescaler = 1
|
|
* HSE Frequency(Hz) = 8000000
|
|
* PLL_M = 8
|
|
* PLL_N = 200
|
|
* PLL_P = 2
|
|
* PLL_Q = 7
|
|
* PLL_R = 2
|
|
* VDD(V) = 3.3
|
|
* Main regulator output voltage = Scale1 mode
|
|
* Flash Latency(WS) = 3
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
static void SystemClock_Config(void)
|
|
{
|
|
RCC_ClkInitTypeDef RCC_ClkInitStruct;
|
|
RCC_OscInitTypeDef RCC_OscInitStruct;
|
|
HAL_StatusTypeDef ret = HAL_OK;
|
|
|
|
/* Enable Power Control clock */
|
|
__HAL_RCC_PWR_CLK_ENABLE();
|
|
|
|
/* The voltage scaling allows optimizing the power consumption when the device is
|
|
clocked below the maximum system frequency, to update the voltage scaling value
|
|
regarding system frequency refer to product datasheet. */
|
|
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
|
|
|
|
/* Enable HSE Oscillator and activate PLL with HSE as source */
|
|
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
|
|
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
|
|
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
|
|
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
|
|
RCC_OscInitStruct.PLL.PLLM = 8;
|
|
RCC_OscInitStruct.PLL.PLLN = 200;
|
|
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
|
|
RCC_OscInitStruct.PLL.PLLQ = 7;
|
|
RCC_OscInitStruct.PLL.PLLR = 2;
|
|
ret = HAL_RCC_OscConfig(&RCC_OscInitStruct);
|
|
|
|
if(ret != HAL_OK)
|
|
{
|
|
while(1) { ; }
|
|
}
|
|
|
|
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
|
|
clocks dividers */
|
|
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
|
|
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
|
|
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
|
|
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
|
|
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
|
|
ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3);
|
|
if(ret != HAL_OK)
|
|
{
|
|
while(1) { ; }
|
|
}
|
|
}
|
|
|
|
#ifdef USE_FULL_ASSERT
|
|
/**
|
|
* @brief Reports the name of the source file and the source line number
|
|
* where the assert_param error has occurred.
|
|
* @param file: pointer to the source file name
|
|
* @param line: assert_param error line source number
|
|
* @retval None
|
|
*/
|
|
void assert_failed(uint8_t *file, uint32_t line)
|
|
{
|
|
/* User can add his own implementation to report the file name and line number,
|
|
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
|
|
|
|
/* Infinite loop */
|
|
while (1)
|
|
{
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|