2021-03-03 14:55:52 +01:00

217 lines
6.4 KiB
C

/**
******************************************************************************
* @file SRAM/SRAM_ExecuteInPlace/Src/main.c
* @author MCD Application Team
* @brief This example provides a description of how to execute a part of the
* code from the STM32F4xx SRAM2 Memory.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F4xx_HAL_Examples
* @{
*/
/* Private function prototypes -----------------------------------------------*/
static void SystemClock_Config(void);
static uint32_t SRAM1_Read_Write(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/* STM32F4xx HAL library initialization:
- Configure the Flash prefetch
- Systick timer is configured by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
- Set NVIC Group Priority to 4
- Low Level Initialization
*/
HAL_Init();
/* Configure the system clock to 100 MHz */
SystemClock_Config();
/* Initialize LED1 and LED2 */
BSP_LED_Init(LED1);
BSP_LED_Init(LED2);
if (SRAM1_Read_Write())
{
/* No error detected. Switch on LED1*/
BSP_LED_On(LED1);
}
else
{
/* Error occurred while SRAM1 R/W Operation. Switch on LED2. */
BSP_LED_On(LED2);
}
/* Infinite loop */
while (1)
{
}
}
/**
* @brief Write and Read Data on SRAM1 memory using SRAM1_Read_Write() function that will be executed from SRAM2
* @param None
* @retval return 1 if the SRAM memory content is correct else return 0
*/
#if defined ( __ICCARM__ )
#pragma location = ".sram2"
#elif defined (__CC_ARM)
#pragma arm section code = ".sram2"
#elif defined(__GNUC__)
__attribute__((section(".sram2")))
#endif
static uint32_t SRAM1_Read_Write(void)
{
uint32_t DATA_SIZE=32768;
uint32_t SRAM1_Base=0x20020000;
int i= 0;
/* Erase SRAM1 memory */
for( i=0; i < DATA_SIZE ; i++)
{
*(__IO uint32_t *)(SRAM1_Base + (i*4)) = 0xffffffff ;
}
/* Write data to the SRAM1 memory */
for( i=0; i < DATA_SIZE ; i++)
{
*(__IO uint32_t *)(SRAM1_Base + (i*4)) = 0xaaaa5555 ;
}
/* Check the SRAM1 memory content correctness */
for(i=0; i < DATA_SIZE ; i++)
{
if ( *(__IO uint32_t *)(SRAM1_Base + (i*4)) != 0xaaaa5555 )
{
return 0 ; /* Error */
}
}
return 1; /* Test OK */
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 100000000
* HCLK(Hz) = 100000000
* AHB Prescaler = 1
* APB1 Prescaler = 2
* APB2 Prescaler = 1
* HSE Frequency(Hz) = 8000000
* PLL_M = 8
* PLL_N = 200
* PLL_P = 2
* PLL_Q = 7
* PLL_R = 2
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 3
* @param None
* @retval None
*/
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
HAL_StatusTypeDef ret = HAL_OK;
/* Enable Power Control clock */
__HAL_RCC_PWR_CLK_ENABLE();
/* The voltage scaling allows optimizing the power consumption when the device is
clocked below the maximum system frequency, to update the voltage scaling value
regarding system frequency refer to product datasheet. */
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 200;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
RCC_OscInitStruct.PLL.PLLR = 2;
ret = HAL_RCC_OscConfig(&RCC_OscInitStruct);
if(ret != HAL_OK)
{
while(1) { ; }
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3);
if(ret != HAL_OK)
{
while(1) { ; }
}
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/