2021-03-03 14:55:52 +01:00

374 lines
12 KiB
C

/**
******************************************************************************
* @file Examples_LL/TIM/TIM_PWMOutput/Src/main.c
* @author MCD Application Team
* @brief This example describes how to use a timer peripheral to generate a
* PWM output signal and update PWM duty cycle
* using the STM32F4xx TIM LL API.
* Peripheral initialization done using LL unitary services functions.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F4xx_LL_Examples
* @{
*/
/** @addtogroup TIM_PWMOutput
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Number of output compare modes */
#define TIM_DUTY_CYCLES_NB 11
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Duty cycles: D = T/P * 100% */
/* where T is the pulse duration and P the period of the PWM signal */
static uint32_t aDutyCycle[TIM_DUTY_CYCLES_NB] = {
0, /* 0% */
10, /* 10% */
20, /* 20% */
30, /* 30% */
40, /* 40% */
50, /* 50% */
60, /* 60% */
70, /* 70% */
80, /* 80% */
90, /* 90% */
100, /* 100% */
};
/* Duty cycle index */
static uint8_t iDutyCycle = 0;
/* Measured duty cycle */
__IO uint32_t uwMeasuredDutyCycle = 0;
/* TIM2 Clock */
static uint32_t TimOutClock = 1;
/* Private function prototypes -----------------------------------------------*/
__STATIC_INLINE void SystemClock_Config(void);
__STATIC_INLINE void Configure_TIMPWMOutput(void);
__STATIC_INLINE void Configure_DutyCycle(uint32_t OCMode);
__STATIC_INLINE void LED_Init(void);
__STATIC_INLINE void UserButton_Init(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/* Configure the system clock to 100 MHz */
SystemClock_Config();
/* Initialize LED2 */
LED_Init();
/* Initialize button in EXTI mode */
UserButton_Init();
/* Configure the timer in output compare mode */
Configure_TIMPWMOutput();
/* Infinite loop */
while (1)
{
}
}
/**
* @brief Configures the timer to generate a PWM signal on the OC1 output.
* @note Peripheral configuration is minimal configuration from reset values.
* Thus, some useless LL unitary functions calls below are provided as
* commented examples - setting is default configuration from reset.
* @param None
* @retval None
*/
__STATIC_INLINE void Configure_TIMPWMOutput(void)
{
/*************************/
/* GPIO AF configuration */
/*************************/
/* Enable the peripheral clock of GPIOs */
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOA);
/* GPIO TIM2_CH1 configuration */
LL_GPIO_SetPinMode(GPIOA, LL_GPIO_PIN_5, LL_GPIO_MODE_ALTERNATE);
LL_GPIO_SetPinPull(GPIOA, LL_GPIO_PIN_5, LL_GPIO_PULL_DOWN);
LL_GPIO_SetPinSpeed(GPIOA, LL_GPIO_PIN_5, LL_GPIO_SPEED_FREQ_HIGH);
LL_GPIO_SetAFPin_0_7(GPIOA, LL_GPIO_PIN_5, LL_GPIO_AF_1);
/***********************************************/
/* Configure the NVIC to handle TIM2 interrupt */
/***********************************************/
NVIC_SetPriority(TIM2_IRQn, 0);
NVIC_EnableIRQ(TIM2_IRQn);
/******************************/
/* Peripheral clocks enabling */
/******************************/
/* Enable the timer peripheral clock */
LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM2);
/***************************/
/* Time base configuration */
/***************************/
/* Set counter mode */
/* Reset value is LL_TIM_COUNTERMODE_UP */
//LL_TIM_SetCounterMode(TIM2, LL_TIM_COUNTERMODE_UP);
/* Set the pre-scaler value to have TIM2 counter clock equal to 10 kHz */
LL_TIM_SetPrescaler(TIM2, __LL_TIM_CALC_PSC(SystemCoreClock, 10000));
/* Enable TIM2_ARR register preload. Writing to or reading from the */
/* auto-reload register accesses the preload register. The content of the */
/* preload register are transferred into the shadow register at each update */
/* event (UEV). */
LL_TIM_EnableARRPreload(TIM2);
/* Set the auto-reload value to have a counter frequency of 100 Hz */
/* TIM2CLK = SystemCoreClock / (APB prescaler & multiplier) */
TimOutClock = SystemCoreClock/1;
LL_TIM_SetAutoReload(TIM2, __LL_TIM_CALC_ARR(TimOutClock, LL_TIM_GetPrescaler(TIM2), 100));
/*********************************/
/* Output waveform configuration */
/*********************************/
/* Set output mode */
/* Reset value is LL_TIM_OCMODE_FROZEN */
LL_TIM_OC_SetMode(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_OCMODE_PWM1);
/* Set output channel polarity */
/* Reset value is LL_TIM_OCPOLARITY_HIGH */
//LL_TIM_OC_SetPolarity(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_OCPOLARITY_HIGH);
/* Set compare value to half of the counter period (50% duty cycle ) */
LL_TIM_OC_SetCompareCH1(TIM2, ( (LL_TIM_GetAutoReload(TIM2) + 1 ) / 2));
/* Enable TIM2_CCR1 register preload. Read/Write operations access the */
/* preload register. TIM2_CCR1 preload value is loaded in the active */
/* at each update event. */
LL_TIM_OC_EnablePreload(TIM2, LL_TIM_CHANNEL_CH1);
/**************************/
/* TIM2 interrupts set-up */
/**************************/
/* Enable the capture/compare interrupt for channel 1*/
LL_TIM_EnableIT_CC1(TIM2);
/**********************************/
/* Start output signal generation */
/**********************************/
/* Enable output channel 1 */
LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH1);
/* Enable counter */
LL_TIM_EnableCounter(TIM2);
/* Force update generation */
LL_TIM_GenerateEvent_UPDATE(TIM2);
}
/**
* @brief Changes the duty cycle of the PWM signal.
* D = (T/P)*100
* where T is the pulse duration and P is the PWM signal period
* @param D Duty cycle
* @retval None
*/
__STATIC_INLINE void Configure_DutyCycle(uint32_t D)
{
uint32_t P; /* Pulse duration */
uint32_t T; /* PWM signal period */
/* PWM signal period is determined by the value of the auto-reload register */
T = LL_TIM_GetAutoReload(TIM2) + 1;
/* Pulse duration is determined by the value of the compare register. */
/* Its value is calculated in order to match the requested duty cycle. */
P = (D*T)/100;
LL_TIM_OC_SetCompareCH1(TIM2, P);
}
/**
* @brief Initialize LED2.
* @param None
* @retval None
*/
__STATIC_INLINE void LED_Init(void)
{
/* Enable the LED2 Clock */
LED2_GPIO_CLK_ENABLE();
/* Configure IO in output push-pull mode to drive external LED2 */
LL_GPIO_SetPinMode(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_MODE_OUTPUT);
/* Reset value is LL_GPIO_OUTPUT_PUSHPULL */
//LL_GPIO_SetPinOutputType(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_OUTPUT_PUSHPULL);
/* Reset value is LL_GPIO_SPEED_FREQ_LOW */
//LL_GPIO_SetPinSpeed(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_SPEED_FREQ_LOW);
/* Reset value is LL_GPIO_PULL_NO */
//LL_GPIO_SetPinPull(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_PULL_NO);
}
/**
* @brief Configures User push-button in GPIO or EXTI Line Mode.
* @param None
* @retval None
*/
__STATIC_INLINE void UserButton_Init(void)
{
/* Enable the BUTTON Clock */
USER_BUTTON_GPIO_CLK_ENABLE();
/* Configure GPIO for BUTTON */
LL_GPIO_SetPinMode(USER_BUTTON_GPIO_PORT, USER_BUTTON_PIN, LL_GPIO_MODE_INPUT);
LL_GPIO_SetPinPull(USER_BUTTON_GPIO_PORT, USER_BUTTON_PIN, LL_GPIO_PULL_NO);
/* Connect External Line to the GPIO*/
USER_BUTTON_SYSCFG_SET_EXTI();
/* Enable a rising trigger EXTI line 13 Interrupt */
USER_BUTTON_EXTI_LINE_ENABLE();
USER_BUTTON_EXTI_FALLING_TRIG_ENABLE();
/* Configure NVIC for USER_BUTTON_EXTI_IRQn */
NVIC_EnableIRQ(USER_BUTTON_EXTI_IRQn);
NVIC_SetPriority(USER_BUTTON_EXTI_IRQn,0x03);
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 100000000
* HCLK(Hz) = 100000000
* AHB Prescaler = 1
* APB1 Prescaler = 2
* APB2 Prescaler = 1
* HSE Frequency(Hz) = 8000000
* PLL_M = 8
* PLL_N = 400
* PLL_P = 4
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 3
* @param None
* @retval None
*/
void SystemClock_Config(void)
{
/* Enable HSE oscillator */
LL_RCC_HSE_EnableBypass();
LL_RCC_HSE_Enable();
while(LL_RCC_HSE_IsReady() != 1)
{
};
/* Set FLASH latency */
LL_FLASH_SetLatency(LL_FLASH_LATENCY_3);
/* Main PLL configuration and activation */
LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSE, LL_RCC_PLLM_DIV_8, 400, LL_RCC_PLLP_DIV_4);
LL_RCC_PLL_Enable();
while(LL_RCC_PLL_IsReady() != 1)
{
};
/* Sysclk activation on the main PLL */
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1);
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL);
while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL)
{
};
/* Set APB1 & APB2 prescaler */
LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_2);
LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1);
/* Set systick to 1ms */
SysTick_Config(100000000 / 1000);
/* Update CMSIS variable (which can be updated also through SystemCoreClockUpdate function) */
SystemCoreClock = 100000000;
}
/******************************************************************************/
/* USER IRQ HANDLER TREATMENT */
/******************************************************************************/
/**
* @brief User button interrupt processing
* @note When the user key button is pressed the PWM duty cycle is updated.
* @param None
* @retval None
*/
void UserButton_Callback(void)
{
/* Set new duty cycle */
iDutyCycle = (iDutyCycle + 1) % TIM_DUTY_CYCLES_NB;
/* Change PWM signal duty cycle */
Configure_DutyCycle(aDutyCycle[iDutyCycle]);
}
/**
* @brief Timer capture/compare interrupt processing
* @param None
* @retval None
*/
void TimerCaptureCompare_Callback(void)
{
uwMeasuredDutyCycle = (LL_TIM_GetCounter(TIM2) * 100) / ( LL_TIM_GetAutoReload(TIM2) + 1 );
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/