2021-03-03 14:55:52 +01:00

443 lines
14 KiB
C
Raw Blame History

/**
******************************************************************************
* @file CEC/CEC_DataExchange/Src/main.c
* @author MCD Application Team
* @brief This example describes how to configure and use the CEC through
* the STM32F4xx HAL API.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F4xx_HAL_Examples
* @{
*/
/** @addtogroup CEC_DataExchange
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
uint8_t Tab_Rx[CEC_MAX_PAYLOAD]; /* Received data buffer. Max size = 16 bytes
* header + opcode followed by up to 14 operands */
uint8_t Tab_Tx[CEC_MAX_PAYLOAD-1]; /* Transmitted data buffer.
* header is not included in Tab_Tx.
* Max size = 15 bytes.
* one opcode followed by up to 14 operands.
* When payload size = 0, only the header is sent
* (ping operation) */
uint8_t ReceivedFrame = 0x0; /* Set when a reception occurs */
uint16_t NbOfReceivedBytes = 0x0; /* Number of received bytes in addition to the header.
* when a ping message has been received (header
* only), NbOfReceivedBytes = 0 */
uint8_t StartSending = 0x0; /* Set when a transmission is triggered by the user */
uint32_t TxSize = 0x0; /* Number of bytes to transmit in addition to the header.
* In case of ping operation (only the header sent),
* TxSize = 0 */
uint8_t DestinationAddress = 0; /* Destination logical address */
uint8_t InitiatorAddress = 0; /* Initiator logical address */
__IO uint8_t TxStatus = 0;
CEC_HandleTypeDef hcec; /* CEC IP handle */
/* Private function prototypes -----------------------------------------------*/
static void SystemClock_Config(void);
static void CEC_Config(CEC_HandleTypeDef *hcec);
static void CEC_FlushRxBuffer(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/* This sample code shows how to use STM32F4xx CEC HAL API to transmit and
* receive data. The device is set in waiting to receive mode and sends
* messages when the evaluation board buttons are pushed by the user */
/* STM32F4xx HAL library initialization:
- Configure the Flash prefetch
- Systick timer is configured by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
- Set NVIC Group Priority to 4
- Low Level Initialization
*/
HAL_Init();
/* Configure the system clock to 180 MHz */
SystemClock_Config();
/* -1- Initialize LEDs mounted on EVAL board */
/* Configure LED1, LED2, LED3 and LED4 */
BSP_LED_Init(LED1);
BSP_LED_Init(LED2);
BSP_LED_Init(LED3);
BSP_LED_Init(LED4);
/* -2- Configure User push-button in Interrupt mode */
/* button-triggered interruptions initialization */
BSP_PB_Init(BUTTON_TAMPER,BUTTON_MODE_EXTI);
/* -3- Configure Joystick Selection push-button in Interrupt mode */
BSP_JOY_Init(JOY_MODE_EXTI);
/* CEC device initialization */
#if defined (DEVICE_1)
DestinationAddress = 0x3; /* follower address */
InitiatorAddress = 0x1;
#elif defined (DEVICE_2)
DestinationAddress = 0x1; /* follower address */
InitiatorAddress = 0x3;
#endif
/* -4- CEC configuration (transfer will take place in Interrupt mode) */
hcec.Instance = CEC;
/* Deinitialize CEC to reinitialize from scratch */
HAL_CEC_DeInit(&hcec);
/* IP configuration */
CEC_Config(&hcec);
/* -5- CEC transfer general variables initialization */
ReceivedFrame = 0;
StartSending = 0;
NbOfReceivedBytes = 0;
CEC_FlushRxBuffer();
while (1)
{
/* if no reception has occurred and no error has been detected,
* transmit a message if the user has pushed a button */
while( (StartSending == 1) && (ReceivedFrame == 0))
{
HAL_CEC_Transmit_IT(&hcec,InitiatorAddress ,DestinationAddress, (uint8_t *)&Tab_Tx, TxSize);
/* loop until TX ends or TX error reported */
while (TxStatus != 1);
StartSending = 0;
}
/* if a frame has been received */
if (ReceivedFrame == 1)
{
if (Tab_Rx[1] == 0x44) /* Test on the opcode value */
{
/* Receive command is equal to Volume Up(Button Up) */
if (Tab_Rx[2] == 0x41) /* Test on the operand value */
{
BSP_LED_On(LED1);
BSP_LED_On(LED2);
BSP_LED_On(LED3);
BSP_LED_On(LED4);
}
else if (Tab_Rx[2] == 0x42) /* Receive command is equal to Volume Down(Button Down) */
{
BSP_LED_Off(LED1);
BSP_LED_Off(LED2);
BSP_LED_Off(LED3);
BSP_LED_Off(LED4);
}
}
else if (Tab_Rx[1] == 0x46) /* Test on the opcode value */
{
BSP_LED_On(LED1);
BSP_LED_On(LED2);
BSP_LED_Off(LED3);
BSP_LED_Off(LED4);
}
else if (Tab_Rx[1] == 0x9F) /* Test on the opcode value */
{
BSP_LED_Off(LED1);
BSP_LED_Off(LED2);
BSP_LED_On(LED3);
BSP_LED_On(LED4);
}
ReceivedFrame = 0;
CEC_FlushRxBuffer();
}
else if (ReceivedFrame == 2) /* means CEC error detected */
{
/* Turn on LED3 */
BSP_LED_On(LED3);
ReceivedFrame = 0;
}
}
}
/**
* @brief Configures the CEC peripheral.
* @param None
* @retval None
*/
static void CEC_Config(CEC_HandleTypeDef *hcec)
{
/* CEC configuration parameters */
#if defined (DEVICE_1)
hcec->Init.OwnAddress = CEC_OWN_ADDRESS_1;
#elif defined (DEVICE_2)
hcec->Init.OwnAddress = CEC_OWN_ADDRESS_3;
#endif
hcec->Init.SignalFreeTime = CEC_DEFAULT_SFT;
hcec->Init.Tolerance = CEC_STANDARD_TOLERANCE;
hcec->Init.BRERxStop = CEC_NO_RX_STOP_ON_BRE;
hcec->Init.BREErrorBitGen = CEC_BRE_ERRORBIT_NO_GENERATION;
hcec->Init.LBPEErrorBitGen = CEC_LBPE_ERRORBIT_NO_GENERATION;
hcec->Init.BroadcastMsgNoErrorBitGen = CEC_BROADCASTERROR_NO_ERRORBIT_GENERATION;
hcec->Init.SignalFreeTimeOption = CEC_SFT_START_ON_TXSOM;
hcec->Init.ListenMode = CEC_REDUCED_LISTENING_MODE;
hcec->Init.RxBuffer = Tab_Rx;
HAL_CEC_Init(hcec);
}
/**
* @brief Tx Transfer completed callback
* @param hcec: CEC handle
* @retval None
*/
void HAL_CEC_TxCpltCallback(CEC_HandleTypeDef *hcec)
{
/* End of transmission */
TxStatus =1;
}
/**
* @brief Rx Transfer completed callback
* @param hcec: CEC handle
* @retval None
*/
void HAL_CEC_RxCpltCallback(CEC_HandleTypeDef *hcec, uint32_t RxFrameSize)
{
ReceivedFrame = 1;
}
/**
* @brief CEC error callbacks
* @param hcec: CEC handle
* @retval None
*/
void HAL_CEC_ErrorCallback(CEC_HandleTypeDef *hcec)
{
ReceivedFrame = 2;
}
/**
* @brief Reset CEC reception buffer
* @param None
* @retval None
*/
static void CEC_FlushRxBuffer(void)
{
uint32_t cpt;
for (cpt = CEC_MAX_PAYLOAD; cpt > 0; cpt--)
{
Tab_Rx[cpt-1] = 0;
}
}
/**
* @brief EXTI line detection callbacks
* @param GPIO_Pin: Specifies the pins connected EXTI line
* @retval None
*/
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
uint32_t ITstatus = 0;
JOYState_TypeDef JoyState = JOY_NONE;
if(GPIO_Pin == TAMPER_BUTTON_PIN)
{
/* Toggle GREEN LED1 */
BSP_LED_Toggle(LED1);
Tab_Tx[0] = 0x44;
Tab_Tx[1] = 0x42;
TxSize = 0x02;
StartSending = 1;
}
if(GPIO_Pin == MFX_IRQOUT_PIN) /* Interrupt received from MFX */
{
/* The different functionalities of MFX (TS, Joystick, SD detection, etc. )
can be configured in exti mode to generate an IRQ on given events.
The MFX IRQ_OUT pin is unique and common to all functionalities, so if several
functionalities are configured in exit mode, the MCU has to enquire MFX about
the IRQ source (see BSP_IO_ITGetStatus). Communication with Mfx is done by I2C.
Often the sw requires ISRs (irq service routines) to be quick while communication
with I2C can be considered relatively long (hundreds of usec depending on I2C clk).
Considering that the features for human interaction like TS, Joystick, SD detection
don<6F>t need immediate reaction, it is suggested to use POLLING instead of EXTI mode,
in order to avoid "blocking I2C communication" on interrupt service routines */
ITstatus = BSP_IO_ITGetStatus(JOY_ALL_PINS);
if (ITstatus) /* Checks if interrupt comes from joystick */
{
/* Get the Joystick State */
JoyState = BSP_JOY_GetState();
if(JoyState == JOY_DOWN)
{
/* Toggle BLUE LED4 */
BSP_LED_Toggle(LED4);
Tab_Tx[0] = 0x9F;
TxSize = 0x01;
StartSending = 1;
}
if(JoyState == JOY_SEL)
{
/* Toggle ORANGE LED2 */
BSP_LED_Toggle(LED2);
Tab_Tx[0] = 0x46;
TxSize = 0x01;
StartSending = 1;
}
if(JoyState == JOY_UP)
{
/* Toggle RED LED3 */
BSP_LED_Toggle(LED3);
Tab_Tx[0] = 0x44;
Tab_Tx[1] = 0x41;
TxSize = 0x02;
StartSending = 1;
}
}
BSP_IO_ITClear();
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 180000000
* HCLK(Hz) = 180000000
* AHB Prescaler = 1
* APB1 Prescaler = 4
* APB2 Prescaler = 2
* HSE Frequency(Hz) = 8000000
* PLL_M = 8
* PLL_N = 360
* PLL_P = 2
* PLL_Q = 7
* PLL_R = 2
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 5
* @param None
* @retval None
*/
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
HAL_StatusTypeDef ret = HAL_OK;
/* Enable Power Control clock */
__HAL_RCC_PWR_CLK_ENABLE();
/* The voltage scaling allows optimizing the power consumption when the device is
clocked below the maximum system frequency, to update the voltage scaling value
regarding system frequency refer to product datasheet. */
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 360;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
RCC_OscInitStruct.PLL.PLLR = 2;
ret = HAL_RCC_OscConfig(&RCC_OscInitStruct);
if(ret != HAL_OK)
{
while(1) { ; }
}
/* Activate the OverDrive to reach the 180 MHz Frequency */
ret = HAL_PWREx_EnableOverDrive();
if(ret != HAL_OK)
{
while(1) { ; }
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5);
if(ret != HAL_OK)
{
while(1) { ; }
}
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/