2019-08-05 13:05:39 +01:00

327 lines
11 KiB
C

/**
******************************************************************************
* @file FMC/FMC_SDRAM_LowPower/Src/main.c
* @author MCD Application Team
* @brief This sample code shows how to use STM32F4xx FMC HAL API to access
* by read and write operation the SDRAM external memory device.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F4xx_HAL_Examples
* @{
*/
/** @addtogroup FMC_SDRAM_LowPower
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define BUFFER_SIZE ((uint32_t)0x0100)
#define WRITE_READ_ADDR ((uint32_t)0x0800)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* SDRAM handler declaration */
SDRAM_HandleTypeDef hsdram;
FMC_SDRAM_TimingTypeDef SDRAM_Timing;
FMC_SDRAM_CommandTypeDef command;
/* Read/Write Buffers */
uint32_t aTxBuffer[BUFFER_SIZE];
uint32_t aRxBuffer[BUFFER_SIZE];
/* Status variables */
__IO uint32_t uwWriteReadStatus = 0;
/* Global structures */
FMC_SDRAM_CommandTypeDef SDRAMCommandStructure;
/* Counter index */
uint32_t uwIndex = 0;
/* Private function prototypes -----------------------------------------------*/
static void SystemClock_Config(void);
static void Error_Handler(void);
static void Fill_Buffer(uint32_t *pBuffer, uint32_t uwBufferLenght, uint32_t uwOffset);
static TestStatus Buffercmp(uint32_t* pBuffer1, uint32_t* pBuffer2, uint16_t BufferLength);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/* STM32F4xx HAL library initialization:
- Configure the Flash prefetch, instruction and Data caches
- Configure the Systick to generate an interrupt each 1 msec
- Set NVIC Group Priority to 4
- Global MSP (MCU Support Package) initialization
*/
HAL_Init();
/* Configure LED3 and LED4 */
BSP_LED_Init(LED3);
BSP_LED_Init(LED4);
/* Configure the system clock to 180 MHz */
SystemClock_Config();
/* Configure USER Button(EXTI_Line0) used to wake-up the system from STOP mode */
BSP_PB_Init(BUTTON_KEY, BUTTON_MODE_EXTI);
/*##-1- Configure the SDRAM device #########################################*/
/* SDRAM device configuration */
BSP_SDRAM_Init();
/*##-2- SDRAM memory write access ##########################################*/
/* Fill the buffer to write */
Fill_Buffer(aTxBuffer, BUFFER_SIZE, 0xA244250F);
/* Write data to the SDRAM memory */
BSP_SDRAM_WriteData(SDRAM_DEVICE_ADDR + WRITE_READ_ADDR, aTxBuffer, BUFFER_SIZE);
/* Wait for USER Button to be pushed to enter stop mode */
while(BSP_PB_GetState(BUTTON_KEY) == RESET)
{
}
/*##-3- Issue self-refresh command to SDRAM device #########################*/
SDRAMCommandStructure.CommandMode = FMC_SDRAM_CMD_SELFREFRESH_MODE;
SDRAMCommandStructure.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK2;
SDRAMCommandStructure.AutoRefreshNumber = 1;
SDRAMCommandStructure.ModeRegisterDefinition = 0;
if(BSP_SDRAM_Sendcmd(&SDRAMCommandStructure) != HAL_OK)
{
/* Command send Error */
Error_Handler();
}
/*##-4- Enter CPU power stop mode ##########################################*/
/* Turn LED3 and LED4 on to indicate entering to STOP mode */
BSP_LED_On(LED3);
BSP_LED_On(LED4);
/* Request to enter STOP mode */
HAL_PWR_EnterSTOPMode(PWR_MAINREGULATOR_ON, PWR_STOPENTRY_WFI);
/*##-5- Wake-up CPU from power stop mode ##################################*/
/* Configure the system clock after wake-up from STOP: enable HSE, PLL and select
PLL as system clock source (HSE and PLL are disabled in STOP mode) */
SystemClock_Config();
/*##-6- Exit CPU power stop mode ###########################################*/
/* Turn LED3 and LED4 Off to indicate entering NORMAL mode */
BSP_LED_Off(LED3);
BSP_LED_Off(LED4);
/*##-7- SDRAM memory read back access ######################################*/
SDRAMCommandStructure.CommandMode = FMC_SDRAM_CMD_NORMAL_MODE;
if(BSP_SDRAM_Sendcmd(&SDRAMCommandStructure) != HAL_OK)
{
/* Command send Error */
Error_Handler();
}
/* Read back data from the SDRAM memory */
BSP_SDRAM_ReadData(SDRAM_DEVICE_ADDR + WRITE_READ_ADDR, aRxBuffer, BUFFER_SIZE);
/*##-8- Checking data integrity ############################################*/
uwWriteReadStatus = Buffercmp(aTxBuffer, aRxBuffer, BUFFER_SIZE);
if (uwWriteReadStatus != PASSED)
{
/* KO */
/* Turn on LED4 */
BSP_LED_On(LED4);
}
else
{
/* OK */
/* Turn on LED3 */
BSP_LED_On(LED3);
}
/* Infinite loop */
while (1)
{
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 180000000
* HCLK(Hz) = 180000000
* AHB Prescaler = 1
* APB1 Prescaler = 4
* APB2 Prescaler = 2
* HSE Frequency(Hz) = 8000000
* PLL_M = 8
* PLL_N = 360
* PLL_P = 2
* PLL_Q = 7
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 5
* @param None
* @retval None
*/
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
/* Enable Power Control clock */
__HAL_RCC_PWR_CLK_ENABLE();
/* The voltage scaling allows optimizing the power consumption when the device is
clocked below the maximum system frequency, to update the voltage scaling value
regarding system frequency refer to product datasheet. */
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 360;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
HAL_RCC_OscConfig(&RCC_OscInitStruct);
/* Activate the Over-Drive mode */
HAL_PWREx_EnableOverDrive();
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5);
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* Turn LED3 on */
BSP_LED_On(LED3);
while(1)
{
}
}
/**
* @brief Fills buffer with user predefined data.
* @param pBuffer: pointer on the buffer to fill
* @param uwBufferLenght: size of the buffer to fill
* @param uwOffset: first value to fill on the buffer
* @retval None
*/
static void Fill_Buffer(uint32_t *pBuffer, uint32_t uwBufferLenght, uint32_t uwOffset)
{
uint32_t tmpIndex = 0;
/* Put in global buffer different values */
for (tmpIndex = 0; tmpIndex < uwBufferLenght; tmpIndex++ )
{
pBuffer[tmpIndex] = tmpIndex + uwOffset;
}
}
/**
* @brief Compares two buffers.
* @param pBuffer1, pBuffer2: buffers to be compared.
* @param BufferLength: buffer's length
* @retval PASSED: pBuffer identical to pBuffer1
* FAILED: pBuffer differs from pBuffer1
*/
static TestStatus Buffercmp(uint32_t* pBuffer1, uint32_t* pBuffer2, uint16_t BufferLength)
{
while (BufferLength--)
{
if (*pBuffer1 != *pBuffer2)
{
return FAILED;
}
pBuffer1++;
pBuffer2++;
}
return PASSED;
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/