2019-08-05 13:05:39 +01:00

533 lines
18 KiB
C

/**
******************************************************************************
* @file Examples_LL/TIM/TIM_InputCapture/Src/main.c
* @author MCD Application Team
* @brief This example describes how to use a timer instance in input
* capture mode using the STM32F4xx TIM LL API.
* Peripheral initialization done using LL unitary services functions.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F4xx_LL_Examples
* @{
*/
/** @addtogroup TIM_InputCapture
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Number of frequencies */
#define TIM_FREQUENCIES_NB 10
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Frequency table */
static uint32_t aFrequency[TIM_FREQUENCIES_NB] = {
2000, /* 2 kHz */
4000, /* 4 kHz */
6000, /* 6 kHz */
8000, /* 8 kHz */
10000, /* 10 kHz */
12000, /* 12 kHz */
14000, /* 14 kHz */
16000, /* 16 kHz */
18000, /* 18 kHz */
20000, /* 20 kHz */
};
/* Frequency index */
static uint8_t iFrequency = 0;
/* Measured frequency */
__IO uint32_t uwMeasuredFrequency = 0;
/* TIM2 Clock */
static uint32_t TimOutClock = 1;
/* Private function prototypes -----------------------------------------------*/
__STATIC_INLINE void SystemClock_Config(void);
__STATIC_INLINE void Configure_TIMPWMOutput(void);
__STATIC_INLINE void Configure_TIMInputCapture(void);
__STATIC_INLINE void Configure_Frequency(uint32_t Frequency);
__STATIC_INLINE void LED_Init(void);
__STATIC_INLINE void LED_Blinking(uint32_t Period);
__STATIC_INLINE void UserButton_Init(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/* Configure the system clock to 100 MHz */
SystemClock_Config();
/* Initialize LED2 */
LED_Init();
/* Initialize button in EXTI mode */
UserButton_Init();
/* Configure TIM3 in input capture mode */
Configure_TIMInputCapture();
/* Configure TIM2 in PWM output mode */
Configure_TIMPWMOutput();
/* Infinite loop */
while (1)
{
}
}
/**
* @brief This function enables the peripheral clock on TIM3, configures
* TIM3_CH1 as input and enables the capture/compare 1 interrupt
* It enables also the peripheral clock for GPIOA and configures
* PA.06 as alternate function for TIM3_CH1.
* @note Peripheral configuration is minimal configuration from reset values.
* Thus, some useless LL unitary functions calls below are provided as
* commented examples - setting is default configuration from reset.
* @param None
* @retval None
*/
__STATIC_INLINE void Configure_TIMInputCapture(void)
{
/*************************/
/* GPIO AF configuration */
/*************************/
/* Enable the peripheral clock of GPIOs */
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOA);
/* GPIO TIM3_CH1 configuration */
LL_GPIO_SetPinMode(GPIOA, LL_GPIO_PIN_6, LL_GPIO_MODE_ALTERNATE);
LL_GPIO_SetPinPull(GPIOA, LL_GPIO_PIN_6, LL_GPIO_PULL_DOWN);
LL_GPIO_SetPinSpeed(GPIOA, LL_GPIO_PIN_6, LL_GPIO_SPEED_FREQ_HIGH);
LL_GPIO_SetAFPin_0_7(GPIOA, LL_GPIO_PIN_6, LL_GPIO_AF_2);
/***************************************************************/
/* Configure the NVIC to handle TIM3 capture/compare interrupt */
/***************************************************************/
NVIC_SetPriority(TIM3_IRQn, 0);
NVIC_EnableIRQ(TIM3_IRQn);
/******************************/
/* Peripheral clocks enabling */
/******************************/
/* Enable the timer peripheral clock */
LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM3);
/************************************/
/* Input capture mode configuration */
/************************************/
/* Select the active input: IC1 = TI1FP1 */
LL_TIM_IC_SetActiveInput(TIM3, LL_TIM_CHANNEL_CH1, LL_TIM_ACTIVEINPUT_DIRECTTI);
/* Configure the input filter duration: no filter needed */
LL_TIM_IC_SetFilter(TIM3, LL_TIM_CHANNEL_CH1, LL_TIM_IC_FILTER_FDIV1);
/* Set input prescaler: prescaler is disabled */
LL_TIM_IC_SetPrescaler(TIM3, LL_TIM_CHANNEL_CH1, LL_TIM_ICPSC_DIV1);
/* Select the edge of the active transition on the TI1 channel: rising edge */
LL_TIM_IC_SetPolarity(TIM3, LL_TIM_CHANNEL_CH1, LL_TIM_IC_POLARITY_RISING);
/**************************/
/* TIM3 interrupts set-up */
/**************************/
/* Enable the capture/compare interrupt for channel 1 */
LL_TIM_EnableIT_CC1(TIM3);
/***********************/
/* Start input capture */
/***********************/
/* Enable output channel 1 */
LL_TIM_CC_EnableChannel(TIM3, LL_TIM_CHANNEL_CH1);
/* Enable counter */
LL_TIM_EnableCounter(TIM3);
}
/**
* @brief This function enables the peripheral clock on TIM2 and configures
* TIM2_CHTIMB_CHX as PWM output.
* It enables also the peripheral clock for GPIOA and configures
* PA.06 as alternate function for TIM2_CHTIMB_CHX.
* @note Peripheral configuration is minimal configuration from reset values.
* Thus, some useless LL unitary functions calls below are provided as
* commented examples - setting is default configuration from reset.
* @param None
* @retval None
*/
__STATIC_INLINE void Configure_TIMPWMOutput(void)
{
/*************************/
/* GPIO AF configuration */
/*************************/
/* Enable the peripheral clock of GPIOs */
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOA);
/* GPIO TIM2_CH1 configuration */
LL_GPIO_SetPinMode(GPIOA, LL_GPIO_PIN_5, LL_GPIO_MODE_ALTERNATE);
LL_GPIO_SetPinPull(GPIOA, LL_GPIO_PIN_5, LL_GPIO_PULL_DOWN);
LL_GPIO_SetPinSpeed(GPIOA, LL_GPIO_PIN_5, LL_GPIO_SPEED_FREQ_HIGH);
LL_GPIO_SetAFPin_0_7(GPIOA, LL_GPIO_PIN_5, LL_GPIO_AF_1);
/******************************/
/* Peripheral clocks enabling */
/******************************/
/* Enable the timer peripheral clock */
LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM2);
/***************************/
/* Time base configuration */
/***************************/
/* Set counter mode */
/* Reset value is LL_TIM_COUNTERMODE_UP */
//LL_TIM_SetCounterMode(TIM2, LL_TIM_COUNTERMODE_UP);
/* Enable TIM2_ARR register preload. Writing to or reading from the */
/* auto-reload register accesses the preload register. The content of the */
/* preload register are transferred into the shadow register at each update */
/* event (UEV). */
LL_TIM_EnableARRPreload(TIM2);
/* Set the auto-reload value to have a counter frequency of 2 kHz */
/* TIM2CLK = SystemCoreClock / (APB prescaler & multiplier) */
TimOutClock = SystemCoreClock/1;
/* TIM2 counter frequency = TimOutClock / (ARR + 1) */
LL_TIM_SetAutoReload(TIM2, __LL_TIM_CALC_ARR(TimOutClock, LL_TIM_GetPrescaler(TIM2), aFrequency[0]));
/*********************************/
/* Output waveform configuration */
/*********************************/
/* Set output mode: PWM mode 1 */
LL_TIM_OC_SetMode(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_OCMODE_PWM1);
/* Set compare value to half of the counter period (50% duty cycle )*/
LL_TIM_OC_SetCompareCH1(TIM2, (LL_TIM_GetAutoReload(TIM2) / 2));
/* Enable TIM2_CCR1 register preload. Read/Write operations access the */
/* preload register. TIM2_CCR1 preload value is loaded in the active */
/* at each update event. */
LL_TIM_OC_EnablePreload(TIM2, LL_TIM_CHANNEL_CH1);
/**********************************/
/* Start output signal generation */
/**********************************/
/* Enable output channel 1 */
LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH1);
/* Enable counter */
LL_TIM_EnableCounter(TIM2);
/* Force update generation */
LL_TIM_GenerateEvent_UPDATE(TIM2);
}
/**
* @brief Changes the frequency of the PWM signal.
* @note this function is executed within the CC1 interrupt service
* routine context.
* @param Requested frequency
* @retval None
*/
__STATIC_INLINE void Configure_Frequency(uint32_t Frequency)
{
/* Set the auto-reload value to have the requested frequency */
/* Frequency = TIM2CLK / (ARR + 1) */
LL_TIM_SetAutoReload(TIM2, __LL_TIM_CALC_ARR(TimOutClock, LL_TIM_GetPrescaler(TIM2), Frequency));
/* Set compare value to half of the counter period (50% duty cycle )*/
LL_TIM_OC_SetCompareCH1(TIM2, (LL_TIM_GetAutoReload(TIM2) / 2));
}
/**
* @brief Initialize LED2.
* @param None
* @retval None
*/
__STATIC_INLINE void LED_Init(void)
{
/* Enable the LED2 Clock */
LED2_GPIO_CLK_ENABLE();
/* Configure IO in output push-pull mode to drive external LED2 */
LL_GPIO_SetPinMode(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_MODE_OUTPUT);
/* Reset value is LL_GPIO_OUTPUT_PUSHPULL */
//LL_GPIO_SetPinOutputType(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_OUTPUT_PUSHPULL);
/* Reset value is LL_GPIO_SPEED_FREQ_LOW */
//LL_GPIO_SetPinSpeed(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_SPEED_FREQ_LOW);
/* Reset value is LL_GPIO_PULL_NO */
//LL_GPIO_SetPinPull(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_PULL_NO);
}
/**
* @brief Set LED2 to Blinking mode for an infinite loop (toggle period based on value provided as input parameter).
* @param Period : Period of time (in ms) between each toggling of LED
* This parameter can be user defined values. Pre-defined values used in that example are :
* @arg LED_BLINK_FAST : Fast Blinking
* @arg LED_BLINK_SLOW : Slow Blinking
* @arg LED_BLINK_ERROR : Error specific Blinking
* @retval None
*/
__STATIC_INLINE void LED_Blinking(uint32_t Period)
{
/* Toggle IO in an infinite loop */
while (1)
{
LL_GPIO_TogglePin(LED2_GPIO_PORT, LED2_PIN);
LL_mDelay(Period);
}
}
/**
* @brief Configures User push-button in GPIO or EXTI Line Mode.
* @param None
* @retval None
*/
__STATIC_INLINE void UserButton_Init(void)
{
/* Enable the BUTTON Clock */
USER_BUTTON_GPIO_CLK_ENABLE();
/* Configure GPIO for BUTTON */
LL_GPIO_SetPinMode(USER_BUTTON_GPIO_PORT, USER_BUTTON_PIN, LL_GPIO_MODE_INPUT);
LL_GPIO_SetPinPull(USER_BUTTON_GPIO_PORT, USER_BUTTON_PIN, LL_GPIO_PULL_NO);
/* Connect External Line to the GPIO*/
USER_BUTTON_SYSCFG_SET_EXTI();
/* Enable a rising trigger EXTI line 13 Interrupt */
USER_BUTTON_EXTI_LINE_ENABLE();
USER_BUTTON_EXTI_FALLING_TRIG_ENABLE();
/* Configure NVIC for USER_BUTTON_EXTI_IRQn */
NVIC_EnableIRQ(USER_BUTTON_EXTI_IRQn);
NVIC_SetPriority(USER_BUTTON_EXTI_IRQn,0x03);
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 100000000
* HCLK(Hz) = 100000000
* AHB Prescaler = 1
* APB1 Prescaler = 2
* APB2 Prescaler = 1
* HSE Frequency(Hz) = 8000000
* PLL_M = 8
* PLL_N = 400
* PLL_P = 4
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 3
* @param None
* @retval None
*/
void SystemClock_Config(void)
{
/* Enable HSE oscillator */
LL_RCC_HSE_EnableBypass();
LL_RCC_HSE_Enable();
while(LL_RCC_HSE_IsReady() != 1)
{
};
/* Set FLASH latency */
LL_FLASH_SetLatency(LL_FLASH_LATENCY_3);
/* Main PLL configuration and activation */
LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSE, LL_RCC_PLLM_DIV_8, 400, LL_RCC_PLLP_DIV_4);
LL_RCC_PLL_Enable();
while(LL_RCC_PLL_IsReady() != 1)
{
};
/* Sysclk activation on the main PLL */
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1);
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL);
while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL)
{
};
/* Set APB1 & APB2 prescaler */
LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_2);
LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1);
/* Set systick to 1ms */
SysTick_Config(100000000 / 1000);
/* Update CMSIS variable (which can be updated also through SystemCoreClockUpdate function) */
SystemCoreClock = 100000000;
}
/******************************************************************************/
/* USER IRQ HANDLER TREATMENT */
/******************************************************************************/
/**
* @brief User button interrupt processing
* @note When the user key button is pressed the frequency of the
* PWM signal generated by TIM2 is updated.
* @param None
* @retval None
*/
void UserButton_Callback(void)
{
/* Set new PWM signal frequency */
iFrequency = (iFrequency + 1) % TIM_FREQUENCIES_NB;
/* Change PWM signal frequency */
Configure_Frequency(aFrequency[iFrequency]);
}
/**
* @brief Timer capture/compare interrupt processing
* @note TIM3 input capture module is used to capture the value of the counter
* after a transition is detected by the corresponding input channel.
* @param None
* @retval None
*/
void TimerCaptureCompare_Callback(void)
{
/* Capture index */
static uint16_t uhCaptureIndex = 0;
/* Captured Values */
static uint32_t uwICValue1 = 0;
static uint32_t uwICValue2 = 0;
static uint32_t uwDiffCapture = 0;
uint32_t TIM3CLK;
uint32_t PSC;
uint32_t IC1PSC;
uint32_t IC1Polarity;
if(uhCaptureIndex == 0)
{
/* Get the 1st Input Capture value */
uwICValue1 = LL_TIM_IC_GetCaptureCH1(TIM3);
uhCaptureIndex = 1;
}
else if(uhCaptureIndex == 1)
{
/* Get the 2nd Input Capture value */
uwICValue2 = LL_TIM_IC_GetCaptureCH1(TIM3);
/* Capture computation */
if (uwICValue2 > uwICValue1)
{
uwDiffCapture = (uwICValue2 - uwICValue1);
}
else if (uwICValue2 < uwICValue1)
{
uwDiffCapture = ((TIM3_ARR_MAX - uwICValue1) + uwICValue2) + 1;
}
else
{
/* If capture values are equal, we have reached the limit of frequency */
/* measures. */
LED_Blinking(LED_BLINK_ERROR);
}
/* The signal frequency is calculated as follows: */
/* Frequency = (TIM3*IC1PSC) / (Capture*(PSC+1)*IC1Polarity) */
/* where: */
/* Capture is the difference between two consecutive captures */
/* TIM3CLK is the timer counter clock frequency */
/* PSC is the timer prescaler value */
/* IC1PSC is the input capture prescaler value */
/* IC1Polarity value depends on the capture sensitivity: */
/* 1 if the input is sensitive to rising or falling edges */
/* 2 if the input is sensitive to both rising and falling edges */
/* Retrieve actual TIM3 counter clock frequency */
TIM3CLK = SystemCoreClock;
/* Retrieve actual TIM3 prescaler value */
PSC = LL_TIM_GetPrescaler(TIM3);
/* Retrieve actual IC1 prescaler ratio */
IC1PSC = __LL_TIM_GET_ICPSC_RATIO(LL_TIM_IC_GetPrescaler(TIM3, LL_TIM_CHANNEL_CH1));
/* Retrieve actual IC1 polarity setting */
if (LL_TIM_IC_GetPolarity(TIM3, LL_TIM_CHANNEL_CH1) == LL_TIM_IC_POLARITY_BOTHEDGE)
IC1Polarity = 2;
else
IC1Polarity = 1;
/* Calculate input signal frequency */
uwMeasuredFrequency = (TIM3CLK *IC1PSC) / (uwDiffCapture*(PSC+1)*IC1Polarity);
/* reset capture index */
uhCaptureIndex = 0;
}
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/