2019-08-05 13:05:39 +01:00

425 lines
15 KiB
C

/**
******************************************************************************
* @file Examples_LL/TIM/TIM_DMA/Src/main.c
* @author MCD Application Team
* @brief This example describes how to use DMA with TIM3 Update request to
* transfer Data from memory to TIM3 Capture Compare Register 3 (CCR3)
* using the STM32F4xx TIM LL API.
* Peripheral initialization done using LL unitary services functions.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F4xx_LL_Examples
* @{
*/
/** @addtogroup TIM_DMA
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define CC_VALUE_NB 3
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Capture Compare buffer */
static uint32_t aCCValue[CC_VALUE_NB] = {0};
/* TIM3 Clock */
static uint32_t TimOutClock = 1;
/* Private function prototypes -----------------------------------------------*/
__STATIC_INLINE void SystemClock_Config(void);
__STATIC_INLINE void Configure_DMA(void);
__STATIC_INLINE void Configure_TIM(void);
__STATIC_INLINE void LED_Init(void);
__STATIC_INLINE void LED_Blinking(uint32_t Period);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/* Configure the system clock to 80 MHz */
SystemClock_Config();
/* Initialize LED2 */
LED_Init();
/* Configure DMA transfer */
Configure_DMA();
/* Configure timer instance */
Configure_TIM();
/* Infinite loop */
while (1)
{
}
}
/**
* @brief This function enables the peripheral clock for the DMA,
* configures the DMA transfer, configures the NVIC for DMA and
* enables the DMA.
* @param None
* @retval None
*/
__STATIC_INLINE void Configure_DMA(void)
{
/******************************************************/
/* Configure NVIC for DMA transfer related interrupts */
/******************************************************/
NVIC_SetPriority(DMA1_Stream7_IRQn, 0);
NVIC_EnableIRQ(DMA1_Stream7_IRQn);
/*****************************/
/* Peripheral clock enabling */
/*****************************/
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_DMA1);
/******************************/
/* DMA transfer Configuration */
/******************************/
LL_DMA_ConfigTransfer(DMA1, LL_DMA_STREAM_7, LL_DMA_DIRECTION_MEMORY_TO_PERIPH |
LL_DMA_PRIORITY_HIGH |
LL_DMA_MODE_CIRCULAR |
LL_DMA_PERIPH_NOINCREMENT |
LL_DMA_MEMORY_INCREMENT |
LL_DMA_PDATAALIGN_WORD |
LL_DMA_MDATAALIGN_WORD);
LL_DMA_SetChannelSelection(DMA1, LL_DMA_STREAM_7, LL_DMA_CHANNEL_5);
LL_DMA_ConfigAddresses(DMA1, LL_DMA_STREAM_7, (uint32_t)&aCCValue, (uint32_t)&TIM3->CCR3, LL_DMA_GetDataTransferDirection(DMA1, LL_DMA_STREAM_7));
LL_DMA_SetDataLength(DMA1, LL_DMA_STREAM_7, CC_VALUE_NB);
LL_DMA_EnableIT_TC(DMA1, LL_DMA_STREAM_7);
LL_DMA_EnableIT_TE(DMA1, LL_DMA_STREAM_7);
/***************************/
/* Enable the DMA transfer */
/***************************/
LL_DMA_EnableStream(DMA1, LL_DMA_STREAM_7);
}
/**
* @brief This function configures TIM3 channel 3 to generate a PWM edge
* aligned signal with a frequency equal to 17.57 KHz and a variable
* duty cycle that is changed by the DMA after a specific number of
* update DMA requests. The number of this repetitive requests is
* defined by the TIM3 repetition counter, each 4 update requests, the
* TIM3 Channel 3 Duty Cycle changes to the next new value defined by
* the aCCValue.
* @note Peripheral configuration is minimal configuration from reset values.
* Thus, some useless LL unitary functions calls below are provided as
* commented examples - setting is default configuration from reset.
* @retval None
*/
__STATIC_INLINE void Configure_TIM(void)
{
/*************************/
/* GPIO AF configuration */
/*************************/
/* Enable the peripheral clock of GPIOs */
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOB);
/* GPIO TIM3_CH3 configuration */
LL_GPIO_SetPinMode(GPIOB, LL_GPIO_PIN_0, LL_GPIO_MODE_ALTERNATE);
LL_GPIO_SetPinPull(GPIOB, LL_GPIO_PIN_0, LL_GPIO_PULL_DOWN);
LL_GPIO_SetPinSpeed(GPIOB, LL_GPIO_PIN_0, LL_GPIO_SPEED_FREQ_HIGH);
LL_GPIO_SetAFPin_0_7(GPIOB, LL_GPIO_PIN_0, LL_GPIO_AF_2);
/******************************************************/
/* Configure the NVIC to handle TIM3 update interrupt */
/******************************************************/
NVIC_SetPriority(TIM3_IRQn, 0);
NVIC_EnableIRQ(TIM3_IRQn);
/******************************/
/* Peripheral clocks enabling */
/******************************/
/* Enable the peripheral clock of TIM3 */
LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM3);
/***************************/
/* Time base configuration */
/***************************/
/* Set counter mode */
/* Reset value is LL_TIM_COUNTERMODE_UP */
//LL_TIM_SetCounterMode(TIM3, LL_TIM_COUNTERMODE_UP);
/* Set the TIM3 auto-reload register to get a PWM frequency at 17.57 KHz */
/* Note that the timer pre-scaler isn't used, therefore the timer counter */
/* clock frequency is equal to the timer frequency. */
/* In this example TIM3 input clock (TIM3CLK) frequency is set to APB1 clock*/
/* (PCLK1), since APB1 pre-scaler is equal to 2 and it is twice PCLK2. */
/* TIM3CLK = PCLK2 */
/* PCLK2 = HCLK */
/* => TIM3CLK = HCLK = SystemCoreClock (100 Mhz) */
/* TIM3CLK = SystemCoreClock / (APB prescaler & multiplier) */
TimOutClock = SystemCoreClock/1;
LL_TIM_SetAutoReload(TIM3, __LL_TIM_CALC_ARR(TimOutClock, LL_TIM_COUNTERMODE_UP, 17570));
/* Set the repetition counter in order to generate one update event every 4 */
/* counter cycles. */
LL_TIM_SetRepetitionCounter(TIM3, 4-1);
/*********************************/
/* Output waveform configuration */
/*********************************/
/* Set output channel 3 in PWM1 mode */
LL_TIM_OC_SetMode(TIM3, LL_TIM_CHANNEL_CH3, LL_TIM_OCMODE_PWM1);
/* TIM3 channel 3 configuration: */
LL_TIM_OC_ConfigOutput(TIM3, LL_TIM_CHANNEL_CH3, LL_TIM_OCPOLARITY_HIGH | LL_TIM_OCIDLESTATE_HIGH);
/* Compute compare value to generate a duty cycle at 75% */
aCCValue[0] = (uint32_t)(((uint32_t) 75 * (LL_TIM_GetAutoReload(TIM3) - 1)) / 100);
/* Compute compare value to generate a duty cycle at 50% */
aCCValue[1] = (uint32_t)(((uint32_t) 50 * (LL_TIM_GetAutoReload(TIM3) - 1)) / 100);
/* Compute compare value to generate a duty cycle at 25% */
aCCValue[2] = (uint32_t)(((uint32_t) 25 * (LL_TIM_GetAutoReload(TIM3) - 1)) / 100);
/* Set PWM duty cycle for TIM3 channel 3*/
LL_TIM_OC_SetCompareCH3(TIM3, aCCValue[0]);
/* Enable register preload for TIM3 channel 3 */
LL_TIM_OC_EnablePreload(TIM3, LL_TIM_CHANNEL_CH3);
/****************************/
/* TIM3 DMA requests set-up */
/****************************/
/* Enable DMA request on update event */
LL_TIM_EnableDMAReq_UPDATE(TIM3);
/* Enable TIM3 Channel 3 DMA request */
LL_TIM_EnableDMAReq_CC3(TIM3);
/**********************************/
/* Start output signal generation */
/**********************************/
/* Enable TIM3 channel 3 */
LL_TIM_CC_EnableChannel(TIM3, LL_TIM_CHANNEL_CH3);
/* Enable TIM3 outputs */
LL_TIM_EnableAllOutputs(TIM3);
/* Enable counter */
LL_TIM_EnableCounter(TIM3);
/* Force update generation */
LL_TIM_GenerateEvent_UPDATE(TIM3);
}
/**
* @brief Initialize LED2.
* @param None
* @retval None
*/
__STATIC_INLINE void LED_Init(void)
{
/* Enable the LED2 Clock */
LED2_GPIO_CLK_ENABLE();
/* Configure IO in output push-pull mode to drive external LED2 */
LL_GPIO_SetPinMode(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_MODE_OUTPUT);
LL_GPIO_SetPinOutputType(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_OUTPUT_PUSHPULL);
LL_GPIO_SetPinSpeed(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_SPEED_FREQ_LOW);
LL_GPIO_SetPinPull(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_PULL_NO);
}
/**
* @brief Set LED2 to Blinking mode for an infinite loop (toggle period based on value provided as input parameter).
* @param Period : Period of time (in ms) between each toggling of LED
* This parameter can be user defined values. Pre-defined values used in that example are :
* @arg LED_BLINK_FAST : Fast Blinking
* @arg LED_BLINK_SLOW : Slow Blinking
* @arg LED_BLINK_ERROR : Error specific Blinking
* @retval None
*/
__STATIC_INLINE void LED_Blinking(uint32_t Period)
{
/* Toggle IO in an infinite loop */
while (1)
{
LL_GPIO_TogglePin(LED2_GPIO_PORT, LED2_PIN);
LL_mDelay(Period);
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 100000000
* HCLK(Hz) = 100000000
* AHB Prescaler = 1
* APB1 Prescaler = 2
* APB2 Prescaler = 1
* HSE Frequency(Hz) = 8000000
* PLL_M = 8
* PLL_N = 400
* PLL_P = 4
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 3
* @param None
* @retval None
*/
void SystemClock_Config(void)
{
/* Enable HSE oscillator */
LL_RCC_HSE_EnableBypass();
LL_RCC_HSE_Enable();
while(LL_RCC_HSE_IsReady() != 1)
{
};
/* Set FLASH latency */
LL_FLASH_SetLatency(LL_FLASH_LATENCY_3);
/* Main PLL configuration and activation */
LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSE, LL_RCC_PLLM_DIV_8, 400, LL_RCC_PLLP_DIV_4);
LL_RCC_PLL_Enable();
while(LL_RCC_PLL_IsReady() != 1)
{
};
/* Sysclk activation on the main PLL */
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1);
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL);
while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL)
{
};
/* Set APB1 & APB2 prescaler */
LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_2);
LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1);
/* Set systick to 1ms */
SysTick_Config(100000000 / 1000);
/* Update CMSIS variable (which can be updated also through SystemCoreClockUpdate function) */
SystemCoreClock = 100000000;
}
/******************************************************************************/
/* USER IRQ HANDLER TREATMENT */
/******************************************************************************/
/**
* @brief Timer update interrupt processing
* @param None
* @retval None
*/
void TimerUpdate_Callback(void)
{
static uint32_t UpdateEventCnt = 0;
/* At every update event the CCR3 register is updated with a new value */
/* which is DMA transferred from aCCValue[]. */
/* Note that the update event (UEV) is generated after upcounting is */
/* repeated for the number of times programmed in the repetition */
/* counter register (TIM1_RCR) + 1 */
if (LL_TIM_OC_GetCompareCH3(TIM3) != aCCValue[UpdateEventCnt])
{
LED_Blinking(LED_BLINK_ERROR);
}
else
{
UpdateEventCnt = (UpdateEventCnt+1) % CC_VALUE_NB;
}
}
/**
* @brief DMA transfer complete callback
* @note This function is executed when the transfer complete interrupt
* is generated after DMA transfer
* @retval None
*/
void TransferComplete_Callback()
{
/* Once the DMA transfer is completed the CCR3 value must match */
/* the value of the last element of aCCValue[]. */
if (LL_TIM_OC_GetCompareCH3(TIM3) != aCCValue[CC_VALUE_NB-1])
{
LED_Blinking(LED_BLINK_ERROR);
}
}
/**
* @brief DMA transfer error callback
* @note This function is executed when the transfer error interrupt
* is generated during DMA transfer
* @retval None
*/
void TransferError_Callback()
{
LED_Blinking(LED_BLINK_ERROR);
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/