2019-08-05 13:05:39 +01:00

280 lines
10 KiB
C

/**
******************************************************************************
* @file TIM/TIM_DMA/Src/main.c
* @author MCD Application Team
* @brief This sample code shows how to use DMA with TIM1 Update request to
* transfer Data from memory to TIM1 Capture Compare Register 3 (CCR3).
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2017 STMicroelectronics</center></h2>>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F4xx_HAL_Examples
* @{
*/
/** @addtogroup TIM_DMA
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Timer handler declaration */
TIM_HandleTypeDef TimHandle;
/* Timer Output Compare Configuration Structure declaration */
TIM_OC_InitTypeDef sConfig;
/* Capture Compare buffer */
uint32_t aCCValue_Buffer[3] = {0, 0, 0};
/* Timer Period*/
uint32_t uhTimerPeriod = 0;
/* Private function prototypes -----------------------------------------------*/
static void SystemClock_Config(void);
static void Error_Handler(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/* STM32F4xx HAL library initialization:
- Configure the Flash prefetch, instruction and Data caches
- Configure the Systick to generate an interrupt each 1 msec
- Set NVIC Group Priority to 4
- Global MSP (MCU Support Package) initialization
*/
HAL_Init();
/* Configure the system clock to 168 MHz */
SystemClock_Config();
/* Configure LED3 */
BSP_LED_Init(LED3);
/* Compute the value of ARR regiter to generate signal frequency at 17.57 Khz */
uhTimerPeriod = (uint32_t) ((SystemCoreClock / 17570 ) - 1);
/* Compute CCR1 value to generate a duty cycle at 75% */
aCCValue_Buffer[0] = (uint32_t)(((uint32_t) 75 * (uhTimerPeriod - 1)) / 100);
/* Compute CCR2 value to generate a duty cycle at 50% */
aCCValue_Buffer[1] = (uint32_t)(((uint32_t) 50 * (uhTimerPeriod - 1)) / 100);
/* Compute CCR3 value to generate a duty cycle at 25% */
aCCValue_Buffer[2] = (uint32_t)(((uint32_t) 25 * (uhTimerPeriod - 1)) / 100);
/*##-1- Configure the TIM peripheral #######################################*/
/* ---------------------------------------------------------------------------
TIM1 input clock (TIM1CLK) is set to 2 * APB2 clock (PCLK2), since APB2
prescaler is different from 1.
TIM1CLK = 2 * PCLK2
PCLK2 = HCLK / 2
=> TIM1CLK = 2 * (HCLK / 2) = HCLK = SystemCoreClock
TIM1CLK = SystemCoreClock, Prescaler = 0, TIM1 counter clock = SystemCoreClock
SystemCoreClock is set to 168 MHz for STM32F4xx devices.
The objective is to configure TIM1 channel 3 to generate complementary PWM
signal with a frequency equal to 17.57 KHz:
- TIM1_Period = (SystemCoreClock / 17570) - 1
and a variable duty cycle that is changed by the DMA after a specific number of
Update DMA request.
The number of this repetitive requests is defined by the TIM1 Repetion counter,
each 3 Update Requests, the TIM1 Channel 3 Duty Cycle changes to the next new
value defined by the aSRC_Buffer.
Note:
SystemCoreClock variable holds HCLK frequency and is defined in system_stm32f4xx.c file.
Each time the core clock (HCLK) changes, user had to update SystemCoreClock
variable value. Otherwise, any configuration based on this variable will be incorrect.
This variable is updated in three ways:
1) by calling CMSIS function SystemCoreClockUpdate()
2) by calling HAL API function HAL_RCC_GetSysClockFreq()
3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency
-----------------------------------------------------------------------------*/
/* Initialize TIM3 peripheral as follow:
+ Period = TimerPeriod (To have an output frequency equal to 17.570 KHz)
+ Repetition Counter = 3
+ Prescaler = 0
+ ClockDivision = 0
+ Counter direction = Up
*/
TimHandle.Instance = TIMx;
TimHandle.Init.Period = uhTimerPeriod;
TimHandle.Init.RepetitionCounter = 3;
TimHandle.Init.Prescaler = 0;
TimHandle.Init.ClockDivision = 0;
TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP;
TimHandle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if(HAL_TIM_PWM_Init(&TimHandle) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/*##-2- Configure the PWM channel 3 ########################################*/
sConfig.OCMode = TIM_OCMODE_PWM1;
sConfig.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfig.Pulse = aCCValue_Buffer[0];
if(HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_3) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/*##-3- Start PWM signal generation in DMA mode ############################*/
if( HAL_TIM_PWM_Start_DMA(&TimHandle, TIM_CHANNEL_3, aCCValue_Buffer, 3) != HAL_OK)
{
/* Starting PWM generation Error */
Error_Handler();
}
/* Infinite loop */
while (1)
{
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* Turn LED3 on */
BSP_LED_On(LED3);
while(1)
{
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 168000000
* HCLK(Hz) = 168000000
* AHB Prescaler = 1
* APB1 Prescaler = 4
* APB2 Prescaler = 2
* HSE Frequency(Hz) = 25000000
* PLL_M = 25
* PLL_N = 336
* PLL_P = 2
* PLL_Q = 7
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 5
* @param None
* @retval None
*/
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
/* Enable Power Control clock */
__HAL_RCC_PWR_CLK_ENABLE();
/* The voltage scaling allows optimizing the power consumption when the device is
clocked below the maximum system frequency, to update the voltage scaling value
regarding system frequency refer to product datasheet. */
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 25;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
HAL_RCC_OscConfig(&RCC_OscInitStruct);
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5);
/* STM32F405x/407x/415x/417x Revision Z devices: prefetch is supported */
if (HAL_GetREVID() == 0x1001)
{
/* Enable the Flash prefetch */
__HAL_FLASH_PREFETCH_BUFFER_ENABLE();
}
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/