2022-03-09 10:37:11 +01:00

614 lines
22 KiB
C

/**
******************************************************************************
* @file system_stm32f4xx.c
* @author MCD Application Team
* @brief CMSIS Cortex-M4 Device Peripheral Access Layer System Source File.
*
* This file provides two functions and one global variable to be called from
* user application:
* - SystemInit(): This function is called at startup just after reset and
* before branch to main program. This call is made inside
* the "startup_stm32f4xx.s" file.
*
* - SystemCoreClock variable: Contains the core clock (HCLK), it can be used
* by the user application to setup the SysTick
* timer or configure other parameters.
*
* - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must
* be called whenever the core clock is changed
* during program execution.
* - SystemInit_ExtMemCtl(): Configures the GPIO and the QSPI in order to
* access the external QSPI memory at the init.
* This function is called when the switch DATA_IN_QSPI
* is activated.
*
* - SetSysClk(): This function is called when the switch DATA_IN_QSPI is
* activated, it configures the clock at 180 MHz with the PLL
* activated. It allows to access QSPI memory with high speed.
*
*
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/** @addtogroup CMSIS
* @{
*/
/** @addtogroup stm32f4xx_system
* @{
*/
/** @addtogroup STM32F4xx_System_Private_Includes
* @{
*/
#include "stm32f4xx.h"
#if !defined (HSE_VALUE)
#define HSE_VALUE ((uint32_t)8000000) /*!< Default value of the External oscillator in Hz */
#endif /* HSE_VALUE */
#if !defined (HSI_VALUE)
#define HSI_VALUE ((uint32_t)16000000) /*!< Value of the Internal oscillator in Hz*/
#endif /* HSI_VALUE */
/**
* @}
*/
/** @addtogroup STM32F4xx_System_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @addtogroup STM32F4xx_System_Private_Defines
* @{
*/
/************************* Miscellaneous Configuration ************************/
/*!< Uncomment the following line if you need to use QSPI memory mounted
on DK as data memory */
#define DATA_IN_QSPI
/*!< Uncomment the following line if you need to relocate your vector Table in
Internal SRAM. */
/* #define VECT_TAB_SRAM */
#define VECT_TAB_OFFSET 0x00 /*!< Vector Table base offset field.
This value must be a multiple of 0x200. */
/******************************************************************************/
/**
* @}
*/
/** @addtogroup STM32F4xx_System_Private_Macros
* @{
*/
/**
* @}
*/
/** @addtogroup STM32F4xx_System_Private_Variables
* @{
*/
/* This variable is updated in three ways:
1) by calling CMSIS function SystemCoreClockUpdate()
2) by calling HAL API function HAL_RCC_GetHCLKFreq()
3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency
Note: If you use this function to configure the system clock; then there
is no need to call the 2 first functions listed above, since SystemCoreClock
variable is updated automatically.
*/
uint32_t SystemCoreClock = 16000000;
const uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9};
const uint8_t APBPrescTable[8] = {0, 0, 0, 0, 1, 2, 3, 4};
/**
* @}
*/
/** @addtogroup STM32F4xx_System_Private_FunctionPrototypes
* @{
*/
#if defined(DATA_IN_QSPI)
static void SetSysClk(void);
static void SystemInit_ExtMemCtl(void);
#endif /* DATA_IN_ExtSRAM || DATA_IN_ExtSDRAM */
/**
* @}
*/
/** @addtogroup STM32F4xx_System_Private_Functions
* @{
*/
/**
* @brief Setup the microcontroller system
* Initialize the FPU setting, vector table location and External memory
* configuration.
* @param None
* @retval None
*/
void SystemInit(void)
{
/* FPU settings ------------------------------------------------------------*/
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
SCB->CPACR |= ((3UL << 10*2)|(3UL << 11*2)); /* set CP10 and CP11 Full Access */
#endif
/* Reset the RCC clock configuration to the default reset state ------------*/
/* Set HSION bit */
RCC->CR |= (uint32_t)0x00000001;
/* Reset CFGR register */
RCC->CFGR = 0x00000000;
/* Reset HSEON, CSSON and PLLON bits */
RCC->CR &= (uint32_t)0xFEF6FFFF;
/* Reset PLLCFGR register */
RCC->PLLCFGR = 0x24003010;
/* Reset HSEBYP bit */
RCC->CR &= (uint32_t)0xFFFBFFFF;
/* Disable all interrupts */
RCC->CIR = 0x00000000;
#if defined(DATA_IN_QSPI)
SetSysClk();
SystemInit_ExtMemCtl();
#endif
/* Configure the Vector Table location add offset address ------------------*/
#ifdef VECT_TAB_SRAM
SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM */
#else
SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH */
#endif
}
/**
* @brief Update SystemCoreClock variable according to Clock Register Values.
* The SystemCoreClock variable contains the core clock (HCLK), it can
* be used by the user application to setup the SysTick timer or configure
* other parameters.
*
* @note Each time the core clock (HCLK) changes, this function must be called
* to update SystemCoreClock variable value. Otherwise, any configuration
* based on this variable will be incorrect.
*
* @note - The system frequency computed by this function is not the real
* frequency in the chip. It is calculated based on the predefined
* constant and the selected clock source:
*
* - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*)
*
* - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**)
*
* - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**)
* or HSI_VALUE(*) multiplied/divided by the PLL factors.
*
* (*) HSI_VALUE is a constant defined in stm32f4xx_hal_conf.h file (default value
* 16 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
*
* (**) HSE_VALUE is a constant defined in stm32f4xx_hal_conf.h file (its value
* depends on the application requirements), user has to ensure that HSE_VALUE
* is same as the real frequency of the crystal used. Otherwise, this function
* may have wrong result.
*
* - The result of this function could be not correct when using fractional
* value for HSE crystal.
*
* @param None
* @retval None
*/
void SystemCoreClockUpdate(void)
{
uint32_t tmp = 0, pllvco = 0, pllp = 2, pllsource = 0, pllm = 2;
/* Get SYSCLK source -------------------------------------------------------*/
tmp = RCC->CFGR & RCC_CFGR_SWS;
switch (tmp)
{
case 0x00: /* HSI used as system clock source */
SystemCoreClock = HSI_VALUE;
break;
case 0x04: /* HSE used as system clock source */
SystemCoreClock = HSE_VALUE;
break;
case 0x08: /* PLL used as system clock source */
/* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLL_M) * PLL_N
SYSCLK = PLL_VCO / PLL_P
*/
pllsource = (RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) >> 22;
pllm = RCC->PLLCFGR & RCC_PLLCFGR_PLLM;
if (pllsource != 0)
{
/* HSE used as PLL clock source */
pllvco = (HSE_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 6);
}
else
{
/* HSI used as PLL clock source */
pllvco = (HSI_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 6);
}
pllp = (((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) >>16) + 1 ) *2;
SystemCoreClock = pllvco/pllp;
break;
default:
SystemCoreClock = HSI_VALUE;
break;
}
/* Compute HCLK frequency --------------------------------------------------*/
/* Get HCLK prescaler */
tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4)];
/* HCLK frequency */
SystemCoreClock >>= tmp;
}
#if defined(DATA_IN_QSPI)
/**
* @brief Configures the clock at 180MHz.
* Called in startup_stm32f4xx.s before jump to main.
* This function configures the clock for fast access to external memories
* @param None
* @retval None
*/
static void SetSysClk(void)
{
register uint32_t tmpreg = 0, timeout = 0xFFFF, tmp = 0;
/******************************************************************************/
/* PLL (clocked by HSE) used as System clock source */
/******************************************************************************/
/************************* PLL Parameters for clock at 100MHz******************/
uint32_t PLL_M = 8,PLL_Q = 7, PLL_R = 2, PLL_N = 200, PLL_P = 2;
/* Enable Power Control clock */
RCC->APB1ENR |= tmp;
/* Config Voltage Scale 1 */
PWR->CR |= PWR_CR_VOS;
/* Enable HSE */
RCC->CR |= ((uint32_t)RCC_CR_HSEON);
/* Wait till HSE is ready and if Time out is reached exit */
do
{
tmpreg = RCC->CR & RCC_CR_HSERDY;
} while((tmpreg != RCC_CR_HSERDY) && (timeout-- > 0));
if(timeout != 0)
{
/* Select regulator voltage output Scale 1 mode */
RCC->APB1ENR |= RCC_APB1ENR_PWREN;
PWR->CR |= PWR_CR_VOS_1;
/* Enable Over Drive to reach the 180MHz frequency */
/* Enable ODEN */
PWR->CR |= 0x00010000;
timeout = 0xFFFF;
/* HCLK = SYSCLK / 1*/
RCC->CFGR |= RCC_CFGR_HPRE_DIV1;
/* PCLK2 = HCLK / 2*/
RCC->CFGR |= RCC_CFGR_PPRE2_DIV2;
/* PCLK1 = HCLK / 4*/
RCC->CFGR |= RCC_CFGR_PPRE1_DIV4;
/* Configure the main PLL */
RCC->PLLCFGR = PLL_M | (PLL_N << 6) | (((PLL_P >> 1) -1) << 16) |
(RCC_PLLCFGR_PLLSRC_HSE) | (PLL_Q << 24) | (PLL_R << 28);
/* Enable the main PLL */
RCC->CR |= RCC_CR_PLLON;
}
/* Wait that PLL is ready */
timeout = 0xFFFF;
do
{
tmpreg = (RCC->CR & RCC_CR_PLLRDY);
} while((tmpreg != RCC_CR_PLLRDY) && (timeout-- > 0));
if(timeout != 0)
{
/* Configure Flash prefetch, Instruction cache, Data cache and wait state */
FLASH->ACR = FLASH_ACR_PRFTEN | FLASH_ACR_ICEN |FLASH_ACR_DCEN |FLASH_ACR_LATENCY_3WS;
/* Select the main PLL as system clock source */
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
RCC->CFGR |= RCC_CFGR_SW_PLL;
timeout = 0xFFFF;
do
{
tmpreg = (RCC->CFGR & RCC_CFGR_SWS);
} while((tmpreg != RCC_CFGR_SWS) && (timeout-- > 0));
}
}
/**
* @brief Setup the external memory controller.
* Configures the GPIO and the QSPI in order to access the external
* QSPI memory at the init.
* This function is called when the switch DATA_IN_QSPI is activated in
* SystemInit() before jump to main.
* @param None
* @retval None
*/
void SystemInit_ExtMemCtl(void)
{
/****************************************************************************/
/* */
/* Configuration of the IOs : */
/* -------------------------- */
/* GPIOB2 : CLK */
/* GPIOG6 : BK1_nCS */
/* GPIOF8 : BK1_IO0/SO */
/* GPIOF9 : BK1_IO1/SI */
/* GPIOF7 : BK1_IO2 */
/* GPIOF6 : BK1_IO3 */
/* */
/* Configuration of the QSPI : */
/* --------------------------- */
/* - Instruction is on one single line */
/* - Address is 32-bits on four lines */
/* - No alternate bytes */
/* - Ten dummy cycles */
/* - Data is on four lines */
/* */
/* If the clock is changed : */
/* ------------------------- */
/* - Modify the prescaler in the control register */
/* - Update the number of dummy cycles on the memory side and on */
/* communication configuration register */
/* */
/* If the memory is changed : */
/* -------------------------- */
/* - Update the device configuration register with the memory configuration */
/* - Modify the instructions with the instruction set of the memory */
/* - Configure the number of dummy cycles as described in memory datasheet */
/* - Modify the data size and alternate bytes according memory datasheet */
/* */
/****************************************************************************/
register uint32_t tmpreg = 0, datareg = 0, tmp = 0, timeout = 0xFFFF;
/*--------------------------------------------------------------------------*/
/*------------------ Activation of the peripheral clocks -------------------*/
/*--------------------------------------------------------------------------*/
/* Enable clock of the QSPI */
RCC->AHB3ENR |= RCC_AHB3ENR_QSPIEN;
/* Enable clock of the IO pins */
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOFEN;
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOGEN;
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOBEN;
/*--------------------------------------------------------------------------*/
/*--------------------- Configuration of the I/O pins ----------------------*/
/*--------------------------------------------------------------------------*/
/* Configure alternate function selection for IO pins */
GPIOF->AFR[1] = 0x000000AA;
GPIOF->AFR[0] = 0x99000000;
GPIOB->AFR[0] = 0x00000900;
GPIOG->AFR[0] = 0x0A000000;
/* Configure alternate function mode for IO pins */
GPIOF->MODER = 0x000AA000;
GPIOB->MODER = 0x000002A0;
GPIOG->MODER = 0x00002000;
/* Configure output speed for IO pins */
GPIOF->OSPEEDR = 0x000FF000;
GPIOB->OSPEEDR = 0x000000F0;
GPIOG->OSPEEDR = 0x00003000;
/* Configure pull-up or pull-down for IO pins */
GPIOG->PUPDR = 0x00001000;
GPIOB->PUPDR = 0x00000100;
/*--------------------------------------------------------------------------*/
/*----------------------- Initialization of the QSPI -----------------------*/
/*--------------------------------------------------------------------------*/
timeout = 0xFFFF;
do
{
tmpreg = (QUADSPI->SR & QUADSPI_SR_BUSY);
} while((tmpreg != 0) && (timeout-- > 0));
if (timeout != 0)
{
/* Configure device configuration register of QSPI */
/* - FSIZE = 23 */
QUADSPI->DCR = QUADSPI_DCR_CSHT_0| 23<<16;
/* Configure control register of QSPI: precsaler, sample shift and enable QSPI */
QUADSPI->CR = QUADSPI_CR_SSHIFT|QUADSPI_CR_EN;
}
/*--------------------------------------------------------------------------*/
/*----------- Configuration of the dummy cycles on flash side --------------*/
/*--------------------------------------------------------------------------*/
/* Configure communication register to read volatile configuration register */
/* - FMODE = Indirect read
- DMODE = Data on a single line
- IMODE = Instruction on a single line
- INSTRUCTION = READ_VOL_CFG_REG_CMD */
tmp = QUADSPI->CCR;
tmp = tmp& (~(QUADSPI_CCR_FMODE | QUADSPI_CCR_DMODE | QUADSPI_CCR_IMODE | QUADSPI_CCR_INSTRUCTION));
tmp |= (QUADSPI_CCR_FMODE_0 | QUADSPI_CCR_DMODE_0 | QUADSPI_CCR_IMODE_0 | 0x85);
QUADSPI->CCR = tmp;
/* Wait that the transfer is complete */
timeout = 0xFFFF;
do
{
tmpreg = (QUADSPI->SR & QUADSPI_SR_TCF);
} while((tmpreg == 0) && (timeout-- > 0));
if (timeout != 0)
{
/* Read received value */
datareg = QUADSPI->DR;
/* Clear transfer complete flag */
QUADSPI->FCR = QUADSPI_FCR_CTCF;
/* Perform abort (mandatory workaround for this version of QSPI) */
tmp = QUADSPI->CR;
tmp = (tmp&(~QUADSPI_CR_ABORT));
QUADSPI->CR = tmp|QUADSPI_CR_ABORT;
/* Wait that the transfer is complete */
timeout = 0xFFFF;
do
{
tmpreg = (QUADSPI->SR & QUADSPI_SR_TCF);
} while((tmpreg == 0) && (timeout-- > 0));
if (timeout != 0)
{
/* Clear transfer complete flag */
QUADSPI->FCR = QUADSPI_FCR_CTCF;
/* Configure communication register to enable write operations */
tmp = QUADSPI->CCR;
tmp = tmp& (~(QUADSPI_CCR_FMODE | QUADSPI_CCR_DMODE | QUADSPI_CCR_INSTRUCTION));
tmp |= 0x06;
QUADSPI->CCR = tmp; //106
// QUADSPI->CCR = 0x00000106;
/* Wait that the transfer is complete */
timeout = 0xFFFF;
do
{
tmpreg = (QUADSPI->SR & QUADSPI_SR_TCF);
} while((tmpreg == 0) && (timeout-- > 0));
if (timeout != 0)
{
/* Clear transfer complete flag */
QUADSPI->FCR = QUADSPI_FCR_CTCF;
/* Configure the mask for the auto-polling mode on write enable bit of status register */
QUADSPI->PSMKR = 0x2;
/* Configure the value for the auto-polling mode on write enable bit of status register */
QUADSPI->PSMAR = 0x2;
/* Configure the auto-polling interval */
QUADSPI->PIR = 0x10;
/* Configure control register to automatically stop the auto-polling mode */
QUADSPI->CR = (QUADSPI->CR&(~QUADSPI_CR_APMS));
QUADSPI->CR |= QUADSPI_CR_APMS;
/* Configure communication register to perform auto-polling mode on status register */
tmp = QUADSPI->CCR;
tmp = tmp& (~(QUADSPI_CCR_FMODE | QUADSPI_CCR_DMODE | QUADSPI_CCR_INSTRUCTION));
tmp |= (QUADSPI_CCR_FMODE_1 | QUADSPI_CCR_DMODE_0 | 0x05);
QUADSPI->CCR = tmp;
/* Wait that the status match occurs */
timeout = 0xFFFF;
do
{
tmpreg = (QUADSPI->SR & QUADSPI_SR_SMF);
} while((tmpreg == 0) && (timeout-- > 0));
if (timeout != 0)
{
/* Clear status match flag */
QUADSPI->FCR = QUADSPI_FCR_CSMF;
/* Write volatile configuration register with new dummy cycles */
datareg = (datareg&0xF)| 10<<4;
/* Configure communication register to write volatile configuration register */
tmp = QUADSPI->CCR;
tmp = tmp& (~(QUADSPI_CCR_FMODE | QUADSPI_CCR_INSTRUCTION));
tmp |= 0x81;
QUADSPI->CCR = tmp;
/* Write the value to transmit */
QUADSPI->DR = datareg;
/* Wait that the transfer is complete */
timeout = 0xFFFF;
do
{
tmpreg = (QUADSPI->SR & QUADSPI_SR_TCF);
} while((tmpreg == 0) && (timeout-- > 0));
if (timeout != 0)
{
/* Clear transfer complete flag */
QUADSPI->FCR = QUADSPI_FCR_CTCF;
/* Perform abort (mandatory workaround for this version of QSPI) */
tmp = QUADSPI->CR;
tmp = (tmp&(~QUADSPI_CR_ABORT));
QUADSPI->CR = tmp|QUADSPI_CR_ABORT;
/* Wait that the transfer is complete */
timeout = 0xFFFF;
do
{
tmpreg = (QUADSPI->SR & QUADSPI_SR_TCF);
} while((tmpreg == 0) && (timeout-- > 0));
if (timeout != 0)
{
/* Clear transfer complete flag */
QUADSPI->FCR = QUADSPI_FCR_CTCF;
/*------------------------------------------------------------*/
/*--------- Configuration of the memory-mapped mode ----------*/
/*------------------------------------------------------------*/
/* Configure communication register for reading sequence in memory-mapped mode */
/* - FMODE = Memory-mapped
- DMODE = Data on four lines
- DCYC = 10
- ADSIZE = 32-bit address
- ADMODE = Address on four lines
- IMODE = Instruction on a single line
- INSTRUCTION = QUAD_INOUT_FAST_READ_4_BYTE_ADDR_CMD */
tmp = QUADSPI->CCR;
tmp = tmp& (~(QUADSPI_CCR_FMODE | QUADSPI_CCR_DMODE | QUADSPI_CCR_DCYC | QUADSPI_CCR_ADSIZE | QUADSPI_CCR_ADMODE | QUADSPI_CCR_INSTRUCTION));
tmp |= (QUADSPI_CCR_FMODE | QUADSPI_CCR_DMODE | (10 << POSITION_VAL(QUADSPI_CCR_DCYC)) | QUADSPI_CCR_ADSIZE_1 | QUADSPI_CCR_ADMODE | 0xEB);
QUADSPI->CCR = tmp;
}
}
}
}
}
}
}
#endif /* DATA IN QSPI */
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/