2022-03-09 10:37:11 +01:00

619 lines
18 KiB
C
Raw Blame History

/**
******************************************************************************
* @file SPI/SPI_FullDuplex_AdvComIT/Src/main.c
* @author MCD Application Team
* @brief This sample code shows how to use STM32F4xx SPI HAL API to transmit
* and receive a data buffer with a communication process based on
* Interrupt transfer.
* The communication is done using 2 Boards.
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F4xx_HAL_Examples
* @{
*/
/** @addtogroup SPI_FullDuplex_AdvComIT
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
enum {
TRANSFER_WAIT,
TRANSFER_COMPLETE,
TRANSFER_ERROR
};
#define SPI_ACK_BYTES 0xA5A5
#define SPI_NACK_BYTES 0xDEAD
#define SPI_TIMEOUT_MAX 0x1000
#define SPI_SLAVE_SYNBYTE 0x53
#define SPI_MASTER_SYNBYTE 0xAC
/* Defines used for transfer communication */
#define ADDRCMD_MASTER_READ ((uint16_t)0x1234)
#define ADDRCMD_MASTER_WRITE ((uint16_t)0x5678)
#define CMD_LENGTH ((uint16_t)0x0004)
#define DATA_LENGTH ((uint16_t)0x0020)
/* Private macro -------------------------------------------------------------*/
/* Uncomment this line to use the board as master, if not it is used as slave */
//#define MASTER_BOARD
/* Private variables ---------------------------------------------------------*/
/* SPI handler declaration */
SPI_HandleTypeDef SpiHandle;
/* Buffer used for transmission */
uint8_t aTxMasterBuffer[] = "SPI - MASTER - Transmit message";
uint8_t aTxSlaveBuffer[] = "SPI - SLAVE - Transmit message ";
/* Buffer used for reception */
uint8_t aRxBuffer[DATA_LENGTH];
/* transfer state */
__IO uint32_t wTransferState = TRANSFER_WAIT;
/* Private function prototypes -----------------------------------------------*/
#ifdef MASTER_BOARD
static void Master_Synchro(void);
#else
static void Slave_Synchro(void);
#endif
static void SystemClock_Config(void);
static void Error_Handler(void);
static uint16_t Buffercmp(uint8_t *pBuffer1, uint8_t *pBuffer2, uint16_t BufferLength);
static void Flush_Buffer(uint8_t* pBuffer, uint16_t BufferLength);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program.
* @param None
* @retval None
*/
int main(void)
{
#ifndef MASTER_BOARD
uint16_t addrcmd = 0;
uint16_t comlength = 0;
#endif
uint8_t paddrcmd[CMD_LENGTH] = {0};
uint16_t ackbytes = 0x0000;
/* STM32F4xx HAL library initialization:
- Configure the Flash prefetch, instruction and Data caches
- Systick timer is configured by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
- Set NVIC Group Priority to 4
- Low Level Initialization: global MSP (MCU Support Package) initialization
*/
HAL_Init();
/* Configure the system clock to 100 MHz */
SystemClock_Config();
/* Configure LED1, LED4 and LED3 */
BSP_LED_Init(LED1);
BSP_LED_Init(LED4);
BSP_LED_Init(LED3);
/*##-1- Configure the SPI peripheral #######################################*/
/* Set the SPI parameters */
SpiHandle.Instance = SPIx;
SpiHandle.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
SpiHandle.Init.Direction = SPI_DIRECTION_2LINES;
SpiHandle.Init.CLKPhase = SPI_PHASE_1EDGE;
SpiHandle.Init.CLKPolarity = SPI_POLARITY_LOW;
SpiHandle.Init.DataSize = SPI_DATASIZE_8BIT;
SpiHandle.Init.FirstBit = SPI_FIRSTBIT_MSB;
SpiHandle.Init.TIMode = SPI_TIMODE_DISABLE;
SpiHandle.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
SpiHandle.Init.CRCPolynomial = 7;
SpiHandle.Init.NSS = SPI_NSS_SOFT;
#ifdef MASTER_BOARD
SpiHandle.Init.Mode = SPI_MODE_MASTER;
#else
SpiHandle.Init.Mode = SPI_MODE_SLAVE;
#endif /* MASTER_BOARD */
if(HAL_SPI_Init(&SpiHandle) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
#ifdef MASTER_BOARD
/* Configure Joystick sel-button button */
BSP_PB_Init(BUTTON_WAKEUP,BUTTON_MODE_GPIO);
/* Wait for Joystick sel-button press before starting the Communication */
while (BSP_PB_GetState(BUTTON_WAKEUP) == GPIO_PIN_RESET)
{
BSP_LED_Toggle(LED1);
HAL_Delay(100);
}
BSP_LED_Off(LED1);
#endif /* MASTER_BOARD */
/* Infinite loop */
while(1)
{
#ifdef MASTER_BOARD
/* Synchronization between Master and Slave */
Master_Synchro();
/* Receive Data from the Slave ###########################################*/
paddrcmd[0] = (uint8_t) (ADDRCMD_MASTER_READ >> 8);
paddrcmd[1] = (uint8_t) ADDRCMD_MASTER_READ;
paddrcmd[2] = (uint8_t) (DATA_LENGTH >> 8);
paddrcmd[3] = (uint8_t) DATA_LENGTH;
/* Send Master READ command to slave */
if(HAL_SPI_Transmit_IT(&SpiHandle, paddrcmd, CMD_LENGTH) != HAL_OK)
{
Error_Handler();
}
/* Before starting a new communication transfer, you need to check the current
state of the peripheral; if it<69>s busy you need to wait for the end of current
transfer before starting a new one.
For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY)
{}
/* Synchronization between Master and Slave */
Master_Synchro();
/* Receive ACK from the Slave */
ackbytes = 0;
if(HAL_SPI_Receive_IT(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes)) != HAL_OK)
{
Error_Handler();
}
while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY)
{}
/* Check the received ACK */
if(ackbytes == SPI_ACK_BYTES)
{
/* Synchronization between Master and Slave */
Master_Synchro();
/* Receive the requested data from the slave */
if(HAL_SPI_Receive_IT(&SpiHandle, aRxBuffer, DATA_LENGTH) != HAL_OK)
{
Error_Handler();
}
while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY)
{}
/* Synchronization between Master and Slave */
Master_Synchro();
/* Send ACK to the Slave */
ackbytes = SPI_ACK_BYTES;
if(HAL_SPI_Transmit_IT(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes)) != HAL_OK)
{
Error_Handler();
}
while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY)
{}
}
else
{
/* Transfer error in transmission process */
Error_Handler();
}
/* Compare received buffer with one expected from slave */
if(Buffercmp((uint8_t*)aTxSlaveBuffer, (uint8_t*)aRxBuffer, CMD_LENGTH))
{
/* Transfer error in transmission process */
Error_Handler();
}
else
{
/* Turn LED4 on: Reception is correct */
BSP_LED_Toggle(LED4);
}
/* Synchronization between Master and Slave */
Master_Synchro();
/* Transmit Data To Slave ################################################*/
paddrcmd[0] = (uint8_t) (ADDRCMD_MASTER_WRITE >> 8);
paddrcmd[1] = (uint8_t) ADDRCMD_MASTER_WRITE;
paddrcmd[2] = (uint8_t) (DATA_LENGTH >> 8);
paddrcmd[3] = (uint8_t) DATA_LENGTH;
/* Send Master WRITE command to the slave */
if(HAL_SPI_Transmit_IT(&SpiHandle, paddrcmd, CMD_LENGTH) != HAL_OK)
{
Error_Handler();
}
while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY)
{}
/* Synchronization between Master and Slave */
Master_Synchro();
/* Receive ACK from the Slave */
ackbytes = 0;
if(HAL_SPI_Receive_IT(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes)) != HAL_OK)
{
Error_Handler();
}
while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY)
{}
/* Check the received ACK */
if(ackbytes == SPI_ACK_BYTES)
{
/* Synchronization between Master and Slave */
Master_Synchro();
/* Send the requested data from the slave */
if(HAL_SPI_Transmit_IT(&SpiHandle, aTxMasterBuffer, DATA_LENGTH) != HAL_OK)
{
Error_Handler();
}
while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY)
{}
/* Synchronization between Master and Slave */
Master_Synchro();
/* Receive ACK from the Slave */
ackbytes = 0;
if(HAL_SPI_Receive_IT(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes)) != HAL_OK)
{
Error_Handler();
}
while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY)
{}
}
else
{
/* Transfer error in transmission process */
Error_Handler();
}
/* Flush Rx buffer for next transmission */
Flush_Buffer(aRxBuffer, DATA_LENGTH);
/* Toggle LED1 */
BSP_LED_Toggle(LED1);
/* This delay permit to user to see LED1 toggling*/
HAL_Delay(500);
}
#else
/* Synchronization between Master and Slave */
Slave_Synchro();
/* Receive command from Master */
if(HAL_SPI_Receive_IT(&SpiHandle, paddrcmd, CMD_LENGTH) != HAL_OK)
{
Error_Handler();
}
while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY)
{}
/* Compute command and required data length */
addrcmd = (uint16_t) ((paddrcmd[0] << 8) | paddrcmd[1]);
comlength = (uint16_t) ((paddrcmd[2] << 8) | paddrcmd[3]);
/* Check if received command correct */
if(((addrcmd == ADDRCMD_MASTER_READ) || (addrcmd == ADDRCMD_MASTER_WRITE)) && (comlength > 0))
{
/* Synchronization between Master and Slave */
Slave_Synchro();
/* Send acknowledge to Master */
ackbytes = SPI_ACK_BYTES;
if(HAL_SPI_Transmit_IT(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes)) != HAL_OK)
{
Error_Handler();
}
while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY)
{}
/* Check if Master requiring data read or write */
if(addrcmd == ADDRCMD_MASTER_READ)
{
/* Synchronization between Master and Slave */
Slave_Synchro();
/* Send data to Master */
if(HAL_SPI_Transmit_IT(&SpiHandle, aTxSlaveBuffer, DATA_LENGTH) != HAL_OK)
{
Error_Handler();
}
while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY)
{}
/* Synchronization between Master and Slave */
Slave_Synchro();
/* Receive acknowledgement from Master */
ackbytes = 0;
if(HAL_SPI_Receive_IT(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes)) != HAL_OK)
{
Error_Handler();
}
while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY)
{}
/* Check acknowledgement */
if(ackbytes != SPI_ACK_BYTES)
{
Error_Handler();
}
}
else if(addrcmd == ADDRCMD_MASTER_WRITE)
{
/* Synchronization between Master and Slave */
Slave_Synchro();
/* Receive data from Master */
if(HAL_SPI_Receive_IT(&SpiHandle, aRxBuffer, DATA_LENGTH) != HAL_OK)
{
Error_Handler();
}
while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY)
{}
/* Synchronization between Master and Slave */
Slave_Synchro();
/* Send acknowledgement to Master */
ackbytes = SPI_ACK_BYTES;
if(HAL_SPI_Transmit_IT(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes)) != HAL_OK)
{
Error_Handler();
}
while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY)
{}
/* In case, Master has sent data, compare received buffer with one expected */
if(Buffercmp((uint8_t*)aTxMasterBuffer, (uint8_t*)aRxBuffer, DATA_LENGTH))
{
/* Transfer error in transmission process */
Error_Handler();
}
else
{
/* Toggle LED4 on: Reception is correct */
BSP_LED_Toggle(LED4);
}
}
}
else
{
/* Synchronization between Master and Slave */
Slave_Synchro();
/* Send acknowledgement to Master */
ackbytes = SPI_NACK_BYTES;
if(HAL_SPI_Transmit_IT(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes)) != HAL_OK)
{
Error_Handler();
}
while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY)
{}
Error_Handler();
}
/* Flush Rx buffer for next transmission */
Flush_Buffer(aRxBuffer, DATA_LENGTH);
}
#endif
}
#ifdef MASTER_BOARD
/**
* @brief Master Synchronization with Slave.
* @param None
* @retval None
*/
static void Master_Synchro(void)
{
uint8_t txackbytes = SPI_MASTER_SYNBYTE, rxackbytes = 0x00;
do
{
/* Call SPI write function to send command to slave */
if(HAL_SPI_TransmitReceive_IT(&SpiHandle, (uint8_t *)&txackbytes, (uint8_t *)&rxackbytes, 1) != HAL_OK)
{
Error_Handler();
}
while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY)
{}
}while(rxackbytes != SPI_SLAVE_SYNBYTE);
}
#else
/**
* @brief Slave synchronization with Master
* @param None
* @retval None
*/
static void Slave_Synchro(void)
{
uint8_t txackbyte = SPI_SLAVE_SYNBYTE, rxackbyte = 0x00;
do
{
if (HAL_SPI_TransmitReceive(&SpiHandle, (uint8_t *)&txackbyte, (uint8_t *)&rxackbyte, 1, HAL_MAX_DELAY) != HAL_OK)
{
Error_Handler();
}
}
while (rxackbyte != SPI_MASTER_SYNBYTE);
}
#endif
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 100000000
* HCLK(Hz) = 100000000
* AHB Prescaler = 1
* APB1 Prescaler = 2
* APB2 Prescaler = 1
* HSE Frequency(Hz) = 8000000
* PLL_M = 8
* PLL_N = 200
* PLL_P = 2
* PLL_Q = 7
* PLL_R = 2
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 3
* @param None
* @retval None
*/
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
HAL_StatusTypeDef ret = HAL_OK;
/* Enable Power Control clock */
__HAL_RCC_PWR_CLK_ENABLE();
/* The voltage scaling allows optimizing the power consumption when the device is
clocked below the maximum system frequency, to update the voltage scaling value
regarding system frequency refer to product datasheet. */
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 200;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
RCC_OscInitStruct.PLL.PLLR = 2;
ret = HAL_RCC_OscConfig(&RCC_OscInitStruct);
if(ret != HAL_OK)
{
while(1) { ; }
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3);
if(ret != HAL_OK)
{
while(1) { ; }
}
}
/**
* @brief SPI error callbacks.
* @param hspi: SPI handle
* @note This example shows a simple way to report transfer error, and you can
* add your own implementation.
* @retval None
*/
void HAL_SPI_ErrorCallback(SPI_HandleTypeDef *hspi)
{
/* call error handler */
Error_Handler();
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* Turn LED3 on */
BSP_LED_On(LED3);
while (1)
{
}
}
/**
* @brief Compares two buffers.
* @param pBuffer1, pBuffer2: buffers to be compared.
* @param BufferLength: buffer's length
* @retval 0 : pBuffer1 identical to pBuffer2
* >0 : pBuffer1 differs from pBuffer2
*/
static uint16_t Buffercmp(uint8_t *pBuffer1, uint8_t *pBuffer2, uint16_t BufferLength)
{
while (BufferLength--)
{
if ((*pBuffer1) != *pBuffer2)
{
return BufferLength;
}
pBuffer1++;
pBuffer2++;
}
return 0;
}
/**
* @brief Flushes the buffer
* @param pBuffer: buffers to be flushed.
* @param BufferLength: buffer's length
* @retval None
*/
static void Flush_Buffer(uint8_t* pBuffer, uint16_t BufferLength)
{
while (BufferLength--)
{
*pBuffer = 0;
pBuffer++;
}
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/