2022-03-09 10:37:11 +01:00

313 lines
11 KiB
C

/**
******************************************************************************
* @file Examples_MIX/DMA/DMA_FLASHToRAM/Src/main.c
* @author MCD Application Team
* @brief This example provides a description of how to use a DMA channel
* to transfer a word data buffer from FLASH memory to embedded
* SRAM memory through the STM32F4xx DMA HAL and LL API.
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F4xx_MIX_Examples
* @{
*/
/** @addtogroup DMA_FLASHToRAM
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* DMA Handle declaration */
DMA_HandleTypeDef DmaHandle;
/* DMA Instance and Channel declaration */
DMA_TypeDef* DmaInstance;
uint32_t DmaStream;
static const uint32_t aSRC_Const_Buffer[BUFFER_SIZE] =
{
0x01020304, 0x05060708, 0x090A0B0C, 0x0D0E0F10,
0x11121314, 0x15161718, 0x191A1B1C, 0x1D1E1F20,
0x21222324, 0x25262728, 0x292A2B2C, 0x2D2E2F30,
0x31323334, 0x35363738, 0x393A3B3C, 0x3D3E3F40,
0x41424344, 0x45464748, 0x494A4B4C, 0x4D4E4F50,
0x51525354, 0x55565758, 0x595A5B5C, 0x5D5E5F60,
0x61626364, 0x65666768, 0x696A6B6C, 0x6D6E6F70,
0x71727374, 0x75767778, 0x797A7B7C, 0x7D7E7F80
};
static uint32_t aDST_Buffer[BUFFER_SIZE];
static __IO uint32_t transferErrorDetected; /* Set to 1 if an error transfer is detected */
static __IO uint32_t transferCompleteDetected; /* Set to 1 if transfer is correctly completed */
/* Private function prototypes -----------------------------------------------*/
static void DMA_Config(void);
static void SystemClock_Config(void);
static void Error_Handler(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/* STM32F4xx HAL library initialization:
- Configure the Flash prefetch
- Systick timer is configured by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
- Set NVIC Group Priority to 4
- Low Level Initialization
*/
HAL_Init();
/* Configure the system clock to 100 MHz */
SystemClock_Config();
/* Initialize LED */
BSP_LED_Init(LED2);
/* Set to 1 if an transfer error is detected */
transferErrorDetected = 0;
transferCompleteDetected = 0;
/* Configure and enable the DMA stream for Memory to Memory transfer */
DMA_Config();
/* Infinite loop */
while (1)
{
if (transferErrorDetected == 1)
{
/* Toggle LED2 with a period of 200 ms */
BSP_LED_Toggle(LED2);
HAL_Delay(200);
}
if (transferCompleteDetected == 1)
{
/* Turn LED2 on*/
BSP_LED_On(LED2);
transferCompleteDetected = 0;
}
}
}
/**
* @brief Configure the DMA controller according to the stream parameters
* defined in main.h file
* @note This function is used to :
* -1- Enable DMA2 clock
* -2- Select the DMA functional Parameters
* -3- Select the DMA instance to be used for the transfer
* -4- Initialize the DMA stream
* -5- Configure NVIC for DMA transfer complete/error interrupts
* -6- Configure and start the DMA transfer using the interrupt mode
* @param None
* @retval None
*/
static void DMA_Config(void)
{
/*## -1- Enable DMA2 clock #################################################*/
__HAL_RCC_DMA2_CLK_ENABLE();
/*##-2- Select the DMA functional Parameters ###############################*/
DmaHandle.Init.Direction = DMA_MEMORY_TO_MEMORY; /* M2M transfer mode */
DmaHandle.Init.PeriphInc = DMA_PINC_ENABLE; /* Peripheral increment mode Enable */
DmaHandle.Init.MemInc = DMA_MINC_ENABLE; /* Memory increment mode Enable */
DmaHandle.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD; /* Peripheral data alignment : Word */
DmaHandle.Init.MemDataAlignment = DMA_MDATAALIGN_WORD; /* memory data alignment : Word */
DmaHandle.Init.Mode = DMA_NORMAL; /* Normal DMA mode */
DmaHandle.Init.Priority = DMA_PRIORITY_HIGH; /* priority level : high */
/*##-3- Select the DMA instance to be used for the transfer : DMA2_Stream0 #*/
DmaHandle.Instance = DMA_INSTANCE;
/*##-4- Initialize the DMA stream ##########################################*/
if (HAL_DMA_Init(&DmaHandle) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/*##-5- Configure NVIC for DMA transfer complete/error interrupts ##########*/
/* Set Interrupt Group Priority */
HAL_NVIC_SetPriority(DMA_INSTANCE_IRQ, 0, 0);
/* Enable the DMA Channel global Interrupt */
HAL_NVIC_EnableIRQ(DMA_INSTANCE_IRQ);
/*##-6- Configure and start the DMA transfer using the interrupt mode ######*/
/* Enable All the DMA interrupts */
/* Using HAL interface, use : */
/* - HAL_DMA_Start_IT() to Configure and start the DMA transfer */
/* using the interrupt mode. */
/* Using LL interface, use : */
/* - __LL_DMA_GET_INSTANCE() to convert DMA2_Stream0 into DMA2 */
/* - __LL_DMA_GET_STREAM() to convert DMA2_Stream0 into LL_DMA_STREAM_0 */
/* - LL_DMA_ConfigAddresses() to configure addresses source, destination */
/* - LL_DMA_SetDataLength() to configure data length to transfer */
/* - LL_DMA_EnableIT_TC() to enable Transfer Complete Interrupt */
/* - LL_DMA_EnableIT_TE() to enable Transfer Error Interrupt */
/* - LL_DMA_EnableStream() to enable DMA Transfer */
/* ########## Starting from this point HAL API must not be used ########## */
DmaInstance = __LL_DMA_GET_INSTANCE(DmaHandle.Instance);
DmaStream = __LL_DMA_GET_STREAM(DmaHandle.Instance);
LL_DMA_ConfigAddresses(DmaInstance, DmaStream,
(uint32_t)&aSRC_Const_Buffer,
(uint32_t)&aDST_Buffer,
LL_DMA_DIRECTION_MEMORY_TO_MEMORY);
LL_DMA_SetDataLength(DmaInstance, DmaStream, BUFFER_SIZE);
LL_DMA_EnableIT_TC(DmaInstance, DmaStream);
LL_DMA_EnableIT_TE(DmaInstance, DmaStream);
LL_DMA_EnableStream(DmaInstance, DmaStream);
}
/**
* @brief DMA conversion complete callback
* @note This function is executed when the transfer complete interrupt
* is generated
* @retval None
*/
void TransferComplete(DMA_HandleTypeDef *DmaHandle)
{
transferCompleteDetected = 1;
}
/**
* @brief DMA conversion error callback
* @note This function is executed when the transfer error interrupt
* is generated during DMA transfer
* @retval None
*/
void TransferError(DMA_HandleTypeDef *DmaHandle)
{
transferErrorDetected = 1;
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 100000000
* HCLK(Hz) = 100000000
* AHB Prescaler = 1
* APB1 Prescaler = 2
* APB2 Prescaler = 1
* HSI Frequency(Hz) = 8000000
* PLL_M = 8
* PLL_N = 400
* PLL_P = 4
* PLL_Q = 7
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 3
* @param None
* @retval None
*/
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
/* Enable Power Control clock */
__HAL_RCC_PWR_CLK_ENABLE();
/* The voltage scaling allows optimizing the power consumption when the device is
clocked below the maximum system frequency, to update the voltage scaling value
regarding system frequency refer to product datasheet. */
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/* Enable HSI Oscillator and activate PLL with HSI as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 400;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
RCC_OscInitStruct.PLL.PLLQ = 7;
if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
while (1)
{
/* Toggle LED2 with a period of 1 s */
BSP_LED_Toggle(LED2);
HAL_Delay(1000);
}
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/