2023-11-22 15:17:09 +01:00

297 lines
9.2 KiB
C

/**
******************************************************************************
* @file FSMC/FSMC_SRAM/Src/main.c
* @author MCD Application Team
* @brief This sample code shows how to use STM32F4xx FSMC HAL API to access
* by read and write operation the SRAM external memory device.
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F4xx_HAL_Examples
* @{
*/
/** @addtogroup FSMC_SRAM
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define BUFFER_SIZE ((uint32_t)0x0100)
#define WRITE_READ_ADDR ((uint32_t)0x0800)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
SRAM_HandleTypeDef hsram;
FSMC_NORSRAM_TimingTypeDef SRAM_Timing;
/* Read/Write Buffers */
uint16_t aTxBuffer[BUFFER_SIZE];
uint16_t aRxBuffer[BUFFER_SIZE];
/* Status variables */
__IO uint32_t uwWriteReadStatus = 0;
/* Counter index */
uint32_t uwIndex = 0;
/* Private function prototypes -----------------------------------------------*/
static void SystemClock_Config(void);
static void Error_Handler(void);
static void Fill_Buffer(uint16_t *pBuffer, uint32_t uwBufferLenght, uint16_t uwOffset);
static TestStatus Buffercmp(uint16_t *pBuffer1, uint16_t *pBuffer2, uint16_t BufferLength);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/* STM32F4xx HAL library initialization:
- Configure the Flash prefetch, instruction and Data caches
- Configure the Systick to generate an interrupt each 1 msec
- Set NVIC Group Priority to 4
- Global MSP (MCU Support Package) initialization
*/
HAL_Init();
/* Configure the system clock to 168 MHz */
SystemClock_Config();
/* Configure LED1, LED2 and LED3 */
BSP_LED_Init(LED1);
BSP_LED_Init(LED2);
BSP_LED_Init(LED3);
/*##-1- Configure the SRAM device ##########################################*/
/* SRAM device configuration */
hsram.Instance = FSMC_NORSRAM_DEVICE;
hsram.Extended = FSMC_NORSRAM_EXTENDED_DEVICE;
SRAM_Timing.AddressSetupTime = 2;
SRAM_Timing.AddressHoldTime = 1;
SRAM_Timing.DataSetupTime = 2;
SRAM_Timing.BusTurnAroundDuration = 1;
SRAM_Timing.CLKDivision = 2;
SRAM_Timing.DataLatency = 2;
SRAM_Timing.AccessMode = FSMC_ACCESS_MODE_A;
hsram.Init.NSBank = FSMC_NORSRAM_BANK2;
hsram.Init.DataAddressMux = FSMC_DATA_ADDRESS_MUX_DISABLE;
hsram.Init.MemoryType = FSMC_MEMORY_TYPE_SRAM;
hsram.Init.MemoryDataWidth = SRAM_MEMORY_WIDTH;
hsram.Init.BurstAccessMode = FSMC_BURST_ACCESS_MODE_DISABLE;
hsram.Init.WaitSignalPolarity = FSMC_WAIT_SIGNAL_POLARITY_LOW;
hsram.Init.WrapMode = FSMC_WRAP_MODE_DISABLE;
hsram.Init.WaitSignalActive = FSMC_WAIT_TIMING_BEFORE_WS;
hsram.Init.WriteOperation = FSMC_WRITE_OPERATION_ENABLE;
hsram.Init.WaitSignal = FSMC_WAIT_SIGNAL_DISABLE;
hsram.Init.ExtendedMode = FSMC_EXTENDED_MODE_DISABLE;
hsram.Init.AsynchronousWait = FSMC_ASYNCHRONOUS_WAIT_DISABLE;
hsram.Init.WriteBurst = FSMC_WRITE_BURST_DISABLE;
/* Initialize the SRAM controller */
if(HAL_SRAM_Init(&hsram, &SRAM_Timing, &SRAM_Timing) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/*##-2- SRAM memory read/write access ######################################*/
/* Fill the buffer to write */
Fill_Buffer(aTxBuffer, BUFFER_SIZE, 0xC20F);
/* Write data to the SRAM memory */
for (uwIndex = 0; uwIndex < BUFFER_SIZE; uwIndex++)
{
*(__IO uint16_t*) (SRAM_BANK_ADDR + WRITE_READ_ADDR + 2*uwIndex) = aTxBuffer[uwIndex];
}
/* Read back data from the SRAM memory */
for (uwIndex = 0; uwIndex < BUFFER_SIZE; uwIndex++)
{
aRxBuffer[uwIndex] = *(__IO uint16_t*) (SRAM_BANK_ADDR + WRITE_READ_ADDR + 2*uwIndex);
}
/*##-3- Checking data integrity ############################################*/
uwWriteReadStatus = Buffercmp(aTxBuffer, aRxBuffer, BUFFER_SIZE);
if (uwWriteReadStatus != PASSED)
{
/* KO */
/* Turn on LED2 */
BSP_LED_On(LED2);
}
else
{
/* OK */
/* Turn on LED1 */
BSP_LED_On(LED1);
}
/* Infinite loop */
while (1)
{
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 168000000
* HCLK(Hz) = 168000000
* AHB Prescaler = 1
* APB1 Prescaler = 4
* APB2 Prescaler = 2
* HSE Frequency(Hz) = 25000000
* PLL_M = 25
* PLL_N = 360
* PLL_P = 2
* PLL_Q = 7
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 5
* @param None
* @retval None
*/
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
/* Enable Power Control clock */
__HAL_RCC_PWR_CLK_ENABLE();
/* The voltage scaling allows optimizing the power consumption when the device is
clocked below the maximum system frequency, to update the voltage scaling value
regarding system frequency refer to product datasheet. */
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 25;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
HAL_RCC_OscConfig(&RCC_OscInitStruct);
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5);
/* STM32F405x/407x/415x/417x Revision Z and upper devices: prefetch is supported */
if (HAL_GetREVID() >= 0x1001)
{
/* Enable the Flash prefetch */
__HAL_FLASH_PREFETCH_BUFFER_ENABLE();
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* Turn LED3 on */
BSP_LED_On(LED3);
while(1)
{
}
}
/**
* @brief Fills buffer with user predefined data.
* @param pBuffer: pointer on the buffer to fill
* @param uwBufferLenght: size of the buffer to fill
* @param uwOffset: first value to fill on the buffer
* @retval None
*/
static void Fill_Buffer(uint16_t *pBuffer, uint32_t uwBufferLenght, uint16_t uwOffset)
{
uint16_t tmpIndex = 0;
/* Put in global buffer different values */
for (tmpIndex = 0; tmpIndex < uwBufferLenght; tmpIndex++ )
{
pBuffer[tmpIndex] = tmpIndex + uwOffset;
}
}
/**
* @brief Compares two buffers.
* @param pBuffer1, pBuffer2: buffers to be compared.
* @param BufferLength: buffer's length
* @retval PASSED: pBuffer identical to pBuffer1
* FAILED: pBuffer differs from pBuffer1
*/
static TestStatus Buffercmp(uint16_t* pBuffer1, uint16_t* pBuffer2, uint16_t BufferLength)
{
while (BufferLength--)
{
if (*pBuffer1 != *pBuffer2)
{
return FAILED;
}
pBuffer1++;
pBuffer2++;
}
return PASSED;
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/