2022-03-09 10:37:11 +01:00

392 lines
13 KiB
C

/**
******************************************************************************
* @file TIM/TIM_Synchronization/Src/main.c
* @author MCD Application Team
* @brief This example shows how to command 2 Timers as slaves (TIM3 & TIM4)
* using a Timer as master (TIM2)
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F4xx_HAL_Examples
* @{
*/
/** @addtogroup TIM_Synchronization
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Timer1 handler declaration: Master */
TIM_HandleTypeDef TimMasterHandle;
/* Timer3 handler declaration: Slave1 */
TIM_HandleTypeDef TimSlave1Handle;
/* Timer4 handler declaration: Slave2 */
TIM_HandleTypeDef TimSlave2Handle;
/* Output compare structure */
TIM_OC_InitTypeDef sOCConfig;
/* Master configuration structure */
TIM_MasterConfigTypeDef sMasterConfig;
/* Slave configuration structure */
TIM_SlaveConfigTypeDef sSlaveConfig;
/* Private function prototypes -----------------------------------------------*/
static void SystemClock_Config(void);
static void Error_Handler(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program.
* @param None
* @retval None
*/
int main(void)
{
/* STM32F4xx HAL library initialization:
- Configure the Flash prefetch
- Systick timer is configured by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
- Set NVIC Group Priority to 4
- Low Level Initialization
*/
HAL_Init();
/* Configure the system clock to 180 MHz */
SystemClock_Config();
/* Configure LED3 */
BSP_LED_Init(LED3);
/* Timers Configuration */
/* ---------------------------------------------------------------------------
TIM1 and Timers(TIM3 and TIM4) synchronisation in parallel mode.
1/TIM1 is configured as Master Timer:
- PWM Mode is used
- The TIM1 Update event is used as Trigger Output
2/TIM3 and TIM4 are slaves for TIM1,
- PWM Mode is used
- The ITR0(TIM1) is used as input trigger for both slaves
- Gated mode is used, so starts and stops of slaves counters
are controlled by the Master trigger output signal(update event).
In this example TIM1 input clock (TIM1CLK) is set to 2 * APB2 clock (PCLK2),
since APB2 prescaler is different from 1.
TIM1CLK = 2 * PCLK2
PCLK2 = HCLK / 2
=> TIM1CLK = HCLK = SystemCoreClock
The TIM1 counter clock is equal to SystemCoreClock = 180 MHz.
The Master Timer TIM1 is running at:
TIM1 frequency = TIM1 counter clock / (TIM1_Period + 1) = 703.125 KHz
TIM1_Period = (TIM1 counter clock / TIM1 frequency) - 1 = 182
and the duty cycle is equal to: TIM1_CCR1/(TIM1_ARR + 1) = 50%
The TIM3 is running at:
(TIM1 frequency)/ ((TIM3 period +1)* (Repetition_Counter+1)) = 46.875 KHz and
a duty cycle equal to TIM3_CCR1/(TIM3_ARR + 1) = 33.3%
The TIM4 is running at:
(TIM1 frequency)/ ((TIM4 period +1)* (Repetition_Counter+1)) = 70.312 KHz and
a duty cycle equal to TIM4_CCR1/(TIM4_ARR + 1) = 50%
Note:
SystemCoreClock variable holds HCLK frequency and is defined in SystemClock_Config().
Each time the core clock (HCLK) changes, user had to update SystemCoreClock
variable value. Otherwise, any configuration based on this variable will be incorrect.
This variable is updated in three ways:
1) by calling CMSIS function SystemCoreClockUpdate()
2) by calling HAL API function HAL_RCC_GetSysClockFreq()
3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency
--------------------------------------------------------------------------- */
/* Set Timers instance */
TimMasterHandle.Instance = TIM1;
TimSlave1Handle.Instance = TIM3;
TimSlave2Handle.Instance = TIM4;
/*====================== Master configuration : TIM1 =======================*/
/* Initialize TIM1 peripheral in PWM mode*/
TimMasterHandle.Init.Period = 255;
TimMasterHandle.Init.Prescaler = 0;
TimMasterHandle.Init.ClockDivision = 0;
TimMasterHandle.Init.CounterMode = TIM_COUNTERMODE_UP;
TimMasterHandle.Init.RepetitionCounter = 4;
TimMasterHandle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&TimMasterHandle) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/* Configure the PWM_channel_1 */
sOCConfig.OCMode = TIM_OCMODE_PWM1;
sOCConfig.OCPolarity = TIM_OCPOLARITY_HIGH;
sOCConfig.Pulse = 127;
sOCConfig.OCNPolarity = TIM_OCNPOLARITY_HIGH;
sOCConfig.OCFastMode = TIM_OCFAST_DISABLE;
sOCConfig.OCIdleState = TIM_OCIDLESTATE_RESET;
sOCConfig.OCNIdleState = TIM_OCNIDLESTATE_RESET;
if (HAL_TIM_PWM_ConfigChannel(&TimMasterHandle, &sOCConfig, TIM_CHANNEL_1) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/* Configure TIM1 as master & use the update event as Trigger Output (TRGO) */
sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_ENABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&TimMasterHandle, &sMasterConfig) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/*================== End of Master configuration : TIM1 ====================*/
/*====================== Slave1 configuration : TIM3 =======================*/
/* Initialize TIM3 peripheral in PWM mode*/
TimSlave1Handle.Init.Period = 2;
TimSlave1Handle.Init.Prescaler = 0;
TimSlave1Handle.Init.ClockDivision = 0;
TimSlave1Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
TimSlave1Handle.Init.RepetitionCounter = 0;
TimSlave1Handle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&TimSlave1Handle) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/* Configure the PWM_channel_1 */
sOCConfig.OCMode = TIM_OCMODE_PWM1;
sOCConfig.OCPolarity = TIM_OCPOLARITY_HIGH;
sOCConfig.Pulse = 1;
if (HAL_TIM_PWM_ConfigChannel(&TimSlave1Handle, &sOCConfig, TIM_CHANNEL_1) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/* Configure TIM3 in Gated slave mode &
use the Internal Trigger 0 (ITR0) as trigger source */
sSlaveConfig.SlaveMode = TIM_SLAVEMODE_GATED;
sSlaveConfig.InputTrigger = TIM_TS_ITR0;
sSlaveConfig.TriggerPolarity = TIM_TRIGGERPOLARITY_NONINVERTED;
sSlaveConfig.TriggerPrescaler = TIM_TRIGGERPRESCALER_DIV1;
sSlaveConfig.TriggerFilter = 0;
if (HAL_TIM_SlaveConfigSynchronization(&TimSlave1Handle, &sSlaveConfig) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/*================== End of Slave1 configuration : TIM3 ====================*/
/*====================== Slave2 configuration : TIM4 =======================*/
/* Initialize TIM4 peripheral in PWM mode*/
TimSlave2Handle.Init.Period = 1;
TimSlave2Handle.Init.Prescaler = 0;
TimSlave2Handle.Init.ClockDivision = 0;
TimSlave2Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
TimSlave2Handle.Init.RepetitionCounter = 0;
TimSlave2Handle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&TimSlave2Handle) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/* Configure the PWM_channel_3 */
sOCConfig.OCMode = TIM_OCMODE_PWM1;
sOCConfig.OCPolarity = TIM_OCPOLARITY_HIGH;
sOCConfig.Pulse = 1;
if (HAL_TIM_PWM_ConfigChannel(&TimSlave2Handle, &sOCConfig, TIM_CHANNEL_3) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/* Configure TIM3 in Gated slave mode &
use the Internal Trigger 0 (ITR0) as trigger source */
sSlaveConfig.SlaveMode = TIM_SLAVEMODE_GATED;
sSlaveConfig.InputTrigger = TIM_TS_ITR0;
if (HAL_TIM_SlaveConfigSynchronization(&TimSlave2Handle, &sSlaveConfig) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/*================== End of Slave2 configuration : TIM4 ====================*/
/* Start Master PWM generation */
if (HAL_TIM_PWM_Start(&TimMasterHandle, TIM_CHANNEL_1) != HAL_OK)
{
/* PWM generation Error */
Error_Handler();
}
/* Start Slave1 PWM generation */
if (HAL_TIM_PWM_Start(&TimSlave1Handle, TIM_CHANNEL_1) != HAL_OK)
{
/* PWM generation Error */
Error_Handler();
}
/* Start Slave2 PWM generation */
if (HAL_TIM_PWM_Start(&TimSlave2Handle, TIM_CHANNEL_3) != HAL_OK)
{
/* PWM generation Error */
Error_Handler();
}
while (1)
{
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* Turn LED3 on */
BSP_LED_On(LED3);
while (1)
{
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 180000000
* HCLK(Hz) = 180000000
* AHB Prescaler = 1
* APB1 Prescaler = 4
* APB2 Prescaler = 2
* HSE Frequency(Hz) = 25000000
* PLL_M = 25
* PLL_N = 360
* PLL_P = 2
* PLL_Q = 7
* PLL_R = 6
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 5
* @param None
* @retval None
*/
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
HAL_StatusTypeDef ret = HAL_OK;
/* Enable Power Control clock */
__HAL_RCC_PWR_CLK_ENABLE();
/* The voltage scaling allows optimizing the power consumption when the device is
clocked below the maximum system frequency, to update the voltage scaling value
regarding system frequency refer to product datasheet. */
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 25;
RCC_OscInitStruct.PLL.PLLN = 360;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
RCC_OscInitStruct.PLL.PLLR = 6;
ret = HAL_RCC_OscConfig(&RCC_OscInitStruct);
if(ret != HAL_OK)
{
while(1) { ; }
}
/* Activate the OverDrive to reach the 180 MHz Frequency */
ret = HAL_PWREx_EnableOverDrive();
if(ret != HAL_OK)
{
while(1) { ; }
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5);
if(ret != HAL_OK)
{
while(1) { ; }
}
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/