2021-03-03 14:55:52 +01:00

270 lines
8.3 KiB
C

/**
******************************************************************************
* @file WWDG/WWDG_Example/Src/main.c
* @author MCD Application Team
* @brief This sample code shows how to use the STM32F413xx/STM32F423xx WWDG HAL API
* to update at regular period the WWDG counter and how to generate
* a software fault generating an MCU WWDG reset on expiry of a
* programmed time period.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F4xx_HAL_Examples
* @{
*/
/** @addtogroup WWDG_Example
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* WWDG handler declaration */
static WWDG_HandleTypeDef WwdgHandle;
/* Private function prototypes -----------------------------------------------*/
static uint32_t TimeoutCalculation(uint32_t timevalue);
static void SystemClock_Config(void);
static void Error_Handler(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
uint32_t delay;
/* STM32F4xx HAL library initialization:
- Configure the Flash prefetch
- Systick timer is configured by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
- Set NVIC Group Priority to 4
- Low Level Initialization
*/
HAL_Init();
/* Configure the system clock to 100 MHz */
SystemClock_Config();
/* Configure LED1, LED2, LED3 */
BSP_LED_Init(LED1);
BSP_LED_Init(LED2);
BSP_LED_Init(LED3);
/*##-1- Check if the system has resumed from WWDG reset ####################*/
if (__HAL_RCC_GET_FLAG(RCC_FLAG_WWDGRST) != RESET)
{
/* WWDGRST flag set: Turn LED1 on */
BSP_LED_On(LED1);
/* Insert 4s delay */
HAL_Delay(4000);
/* Prior to clear WWDGRST flag: Turn LED1 off */
BSP_LED_Off(LED1);
}
/* Clear reset flags in any case */
__HAL_RCC_CLEAR_RESET_FLAGS();
/* Configure User push-button */
BSP_PB_Init(BUTTON_USER, BUTTON_MODE_EXTI);
/*##-2- Init & Start WWDG peripheral ######################################*/
/* WWDG clock counter = (PCLK1 (50MHz)/4096)/8) = 1525 Hz (~655 us)
WWDG Window value = 80 means that the WWDG counter should be refreshed only
when the counter is below 80 (and greater than 64/0x40) otherwise a reset will
be generated.
WWDG Counter value = 127, WWDG timeout = ~655 us * 64 = 42 ms */
WwdgHandle.Instance = WWDG;
WwdgHandle.Init.Prescaler = WWDG_PRESCALER_8;
WwdgHandle.Init.Window = 0x50;
WwdgHandle.Init.Counter = 0x7F;
WwdgHandle.Init.EWIMode = WWDG_EWI_DISABLE;
if (HAL_WWDG_Init(&WwdgHandle) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/* calculate delay to enter window. Add 1ms to secure round number to upper number */
delay = TimeoutCalculation((WwdgHandle.Init.Counter-WwdgHandle.Init.Window) + 1) + 1;
/* Infinite loop */
while (1)
{
/* Toggle LED2 */
BSP_LED_Toggle(LED2);
/* Insert calculated delay */
HAL_Delay(delay);
if (HAL_WWDG_Refresh(&WwdgHandle) != HAL_OK)
{
Error_Handler();
}
}
}
/**
* @brief Timeout calculation function.
* This function calculates any timeout related to
* WWDG with given prescaler and system clock.
* @param timevalue: period in term of WWDG counter cycle.
* @retval None
*/
static uint32_t TimeoutCalculation(uint32_t timevalue)
{
uint32_t timeoutvalue = 0;
uint32_t pclk1 = 0;
uint32_t wdgtb = 0;
/* considering APB divider is still 1, use HCLK value */
pclk1 = HAL_RCC_GetPCLK1Freq();
/* get prescaler */
wdgtb = (1 << ((WwdgHandle.Init.Prescaler) >> 7)); /* 2^WDGTB[1:0] */
/* calculate timeout */
timeoutvalue = ((4096 * wdgtb * timevalue) / (pclk1 / 1000));
return timeoutvalue;
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 100000000
* HCLK(Hz) = 100000000
* AHB Prescaler = 1
* APB1 Prescaler = 2
* APB2 Prescaler = 1
* HSE Frequency(Hz) = 8000000
* PLL_M = 8
* PLL_N = 200
* PLL_P = 2
* PLL_Q = 7
* PLL_R = 2
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 3
* @param None
* @retval None
*/
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
HAL_StatusTypeDef ret = HAL_OK;
/* Enable Power Control clock */
__HAL_RCC_PWR_CLK_ENABLE();
/* The voltage scaling allows optimizing the power consumption when the device is
clocked below the maximum system frequency, to update the voltage scaling value
regarding system frequency refer to product datasheet. */
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 200;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
RCC_OscInitStruct.PLL.PLLR = 2;
ret = HAL_RCC_OscConfig(&RCC_OscInitStruct);
if(ret != HAL_OK)
{
while(1) { ; }
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3);
if(ret != HAL_OK)
{
while(1) { ; }
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* Turn LED3 on */
BSP_LED_On(LED3);
while(1)
{
}
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/