2021-03-03 14:55:52 +01:00

284 lines
8.0 KiB
C

/**
******************************************************************************
* @file Examples_LL/CRC/CRC_CalculateAndCheck/Src/main.c
* @author MCD Application Team
* @brief This example describes how to use CRC peripheral for generating CRC value
* for an input data Buffer using the STM32F4xx CRC LL API.
* Peripheral initialization done using LL unitary services functions.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F4xx_LL_Examples
* @{
*/
/** @addtogroup CRC_CalculateAndCheck
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define BUFFER_SIZE 36
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Used for storing CRC Value */
__IO uint32_t uwCRCValue = 0;
static const uint8_t aDataBuffer[BUFFER_SIZE] =
{
0x21, 0x10, 0x00, 0x00, 0x63, 0x30, 0x42, 0x20, 0xa5, 0x50, 0x84, 0x40,
0xe7, 0x70, 0xc6, 0x60, 0x4a, 0xa1, 0x29, 0x91, 0x8c, 0xc1, 0x6b, 0xb1,
0xce, 0xe1, 0xad, 0xd1, 0x31, 0x12, 0xef, 0xf1, 0x52, 0x22, 0x73, 0x32,
};
/* Expected CRC Value */
uint32_t uwExpectedCRCValue = 0xFF813A5C;
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
void Configure_CRC(void);
uint32_t Calculate_CRC(uint32_t);
void CheckCRCResultValue(void);
void LED_Init(void);
void LED_On(void);
void LED_Blinking(uint32_t Period);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/* Configure the system clock to 100 MHz */
SystemClock_Config();
/* Initialize LED2 */
LED_Init();
/* Configure CRC (CRC IP configuration using default Polynomial value) */
Configure_CRC();
/* Perform CRC calculation on data contained in aDataBuffer */
uwCRCValue = Calculate_CRC(BUFFER_SIZE);
/* Check if CRC computed result value is equal to expected one */
CheckCRCResultValue();
/* Infinite loop */
while (1)
{
}
}
/**
* @brief This function configures CRC Instance.
* @note This function is used to enable CRC Peripheral clock
* @param None
* @retval None
*/
void Configure_CRC(void)
{
/* Enable peripheral clock for CRC *********************/
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_CRC);
}
/**
* @brief This function performs CRC calculation on BufferSize bytes from input data buffer aDataBuffer.
* @param BufferSize Nb of bytes to be processed for CRC calculation
* @retval 32-bit CRC value computed on input data buffer
*/
uint32_t Calculate_CRC(uint32_t BufferSize)
{
register uint32_t data = 0;
register uint32_t index = 0;
/* Compute the CRC of Data Buffer array*/
for (index = 0; index < (BufferSize / 4); index++)
{
data = (uint32_t)((aDataBuffer[4 * index + 3] << 24) | (aDataBuffer[4 * index + 2] << 16) | (aDataBuffer[4 * index + 1] << 8) | aDataBuffer[4 * index]);
LL_CRC_FeedData32(CRC, data);
}
/* Return computed CRC value */
return(LL_CRC_ReadData32(CRC));
}
/**
* @brief Check CRC computation result value.
* @param None
* @retval None
*/
void CheckCRCResultValue(void)
{
/* Compare the CRC value to the Expected one */
if (uwCRCValue != uwExpectedCRCValue)
{
/* Wrong CRC value: Set LED2 to Blinking mode (Error) */
LED_Blinking(LED_BLINK_ERROR);
}
else
{
/* Right CRC value: Turn LED2 on */
LED_On();
}
}
/**
* @brief Initialize LED2.
* @param None
* @retval None
*/
void LED_Init(void)
{
/* Enable the LED2 Clock */
LED2_GPIO_CLK_ENABLE();
/* Configure IO in output push-pull mode to drive external LED2 */
LL_GPIO_SetPinMode(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_MODE_OUTPUT);
/* Reset value is LL_GPIO_OUTPUT_PUSHPULL */
//LL_GPIO_SetPinOutputType(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_OUTPUT_PUSHPULL);
/* Reset value is LL_GPIO_SPEED_FREQ_LOW */
//LL_GPIO_SetPinSpeed(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_SPEED_FREQ_LOW);
/* Reset value is LL_GPIO_PULL_NO */
//LL_GPIO_SetPinPull(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_PULL_NO);
}
/**
* @brief Turn-on LED2.
* @param None
* @retval None
*/
void LED_On(void)
{
/* Turn LED2 on */
LL_GPIO_SetOutputPin(LED2_GPIO_PORT, LED2_PIN);
}
/**
* @brief Set LED2 to Blinking mode for an infinite loop (toggle period based on value provided as input parameter).
* @param Period : Period of time (in ms) between each toggling of LED
* This parameter can be user defined values. Pre-defined values used in that example are :
* @arg LED_BLINK_FAST : Fast Blinking
* @arg LED_BLINK_SLOW : Slow Blinking
* @arg LED_BLINK_ERROR : Error specific Blinking
* @retval None
*/
void LED_Blinking(uint32_t Period)
{
/* Toggle IO in an infinite loop */
while (1)
{
LL_GPIO_TogglePin(LED2_GPIO_PORT, LED2_PIN);
LL_mDelay(Period);
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 100000000
* HCLK(Hz) = 100000000
* AHB Prescaler = 1
* APB1 Prescaler = 2
* APB2 Prescaler = 1
* HSE Frequency(Hz) = 8000000
* PLL_M = 8
* PLL_N = 400
* PLL_P = 4
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 3
* @param None
* @retval None
*/
void SystemClock_Config(void)
{
/* Enable HSE oscillator */
LL_RCC_HSE_EnableBypass();
LL_RCC_HSE_Enable();
while(LL_RCC_HSE_IsReady() != 1)
{
};
/* Set FLASH latency */
LL_FLASH_SetLatency(LL_FLASH_LATENCY_3);
/* Main PLL configuration and activation */
LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSE, LL_RCC_PLLM_DIV_8, 400, LL_RCC_PLLP_DIV_4);
LL_RCC_PLL_Enable();
while(LL_RCC_PLL_IsReady() != 1)
{
};
/* Sysclk activation on the main PLL */
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1);
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL);
while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL)
{
};
/* Set APB1 & APB2 prescaler */
LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_2);
LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1);
/* Set systick to 1ms */
SysTick_Config(100000000 / 1000);
/* Update CMSIS variable (which can be updated also through SystemCoreClockUpdate function) */
SystemCoreClock = 100000000;
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/