2022-03-09 10:37:11 +01:00

416 lines
12 KiB
C

/**
******************************************************************************
* @file TIM/TIM_PWMInput/Src/main.c
* @author MCD Application Team
* @brief This example shows how to use the TIM peripheral to measure the
* frequency and duty cycle of an external signal.
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F4xx_HAL_Examples
* @{
*/
/** @addtogroup TIM_PWMInput
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Number of frequencies */
#define TIM_FREQUENCIES_NB 6
#define TIM_DUTYCYCLE_NB 2
/* TIM3_ARR register maximum value */
#define TIM3_ARR_MAX (uint32_t)0xFFFF
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Timer handler declaration */
TIM_HandleTypeDef htim3;
TIM_HandleTypeDef htim2;
/* Timer Input Capture Configuration Structure declaration */
TIM_IC_InitTypeDef sConfig;
/* Slave configuration structure */
TIM_SlaveConfigTypeDef sSlaveConfig;
/* Captured Value */
__IO uint32_t uwIC2Value = 0;
/* Duty Cycle Value */
__IO uint32_t uwDutyCycle = 0;
/* Frequency Value */
__IO uint32_t uwFrequency = 0;
/* Counter Prescaler value */
uint32_t uhPrescalerValue = 0;
static uint8_t iFrequency = 0;
/* Frequency index *//* Frequency table */
static uint32_t aFrequency[TIM_FREQUENCIES_NB] = {
2000, /* 2 kHz */
2000, /* 2 kHz */
3000, /* 3 kHz */
3000, /* 3 kHz */
4000, /* 4 kHz */
4000, /* 4 kHz */
};
/* Frequency index */
static uint8_t iDutyCycle = 0;
static uint32_t aDutyCycle[TIM_DUTYCYCLE_NB] = {
2, /* 50% */
4, /* 25% */
};
/* Private function prototypes -----------------------------------------------*/
static void SystemClock_Config(void);
static void Error_Handler(void);
static void UserButton_Init(void);
static void WaveGeneration_Init(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program.
* @param None
* @retval None
*/
int main(void)
{
/* STM32F4xx HAL library initialization:
- Configure the Flash prefetch
- Systick timer is configured by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
- Set NVIC Group Priority to 4
- Low Level Initialization
*/
HAL_Init();
/* Configure the system clock to 100 MHz */
SystemClock_Config();
/* Initialize all configured peripherals */
/* Initialize push button */
UserButton_Init();
/* Initialize TIM2 for output waveform generation */
WaveGeneration_Init();
/* Configure LED2 */
BSP_LED_Init(LED2);
/* Start Input waveform generation */
if (HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_1) != HAL_OK)
{
/* PWM Generation Error */
Error_Handler();
}
/*##-1- Configure the TIM peripheral #######################################*/
/* ---------------------------------------------------------------------------
TIM3 configuration: PWM Input mode
In this example TIM3 input clock (TIM3CLK) is set to APB1 clock (PCLK1),
since APB1 prescaler is 1.
TIM3CLK = PCLK1
PCLK1 = HCLK
=> TIM3CLK = HCLK = SystemCoreClock
External Signal Frequency = TIM3 counter clock / TIM3_CCR2 in Hz.
External Signal DutyCycle = (TIM3_CCR1*100)/(TIM3_CCR2) in %.
--------------------------------------------------------------------------- */
/* Set TIMx instance */
htim3.Instance = TIMx;
/* Initialize TIMx peripheral as follows:
+ Period = 0xFFFF
+ Prescaler = 0
+ ClockDivision = 0
+ Counter direction = Up
*/
htim3.Init.Period = 0xFFFF;
htim3.Init.Prescaler = 0;
htim3.Init.ClockDivision = 0;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
if (HAL_TIM_IC_Init(&htim3) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/*##-2- Configure the Input Capture channels ###############################*/
/* Common configuration */
sConfig.ICPrescaler = TIM_ICPSC_DIV1;
sConfig.ICFilter = 0;
/* Configure the Input Capture of channel 1 */
sConfig.ICPolarity = TIM_ICPOLARITY_FALLING;
sConfig.ICSelection = TIM_ICSELECTION_INDIRECTTI;
if (HAL_TIM_IC_ConfigChannel(&htim3, &sConfig, TIM_CHANNEL_1) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/* Configure the Input Capture of channel 2 */
sConfig.ICPolarity = TIM_ICPOLARITY_RISING;
sConfig.ICSelection = TIM_ICSELECTION_DIRECTTI;
if (HAL_TIM_IC_ConfigChannel(&htim3, &sConfig, TIM_CHANNEL_2) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/*##-3- Configure the slave mode ###########################################*/
/* Select the slave Mode: Reset Mode */
sSlaveConfig.SlaveMode = TIM_SLAVEMODE_RESET;
sSlaveConfig.InputTrigger = TIM_TS_TI2FP2;
sSlaveConfig.TriggerPolarity = TIM_TRIGGERPOLARITY_NONINVERTED;
sSlaveConfig.TriggerPrescaler = TIM_TRIGGERPRESCALER_DIV1;
sSlaveConfig.TriggerFilter = 0;
if (HAL_TIM_SlaveConfigSynchronization(&htim3, &sSlaveConfig) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/*##-4- Start the Input Capture in interrupt mode ##########################*/
if (HAL_TIM_IC_Start_IT(&htim3, TIM_CHANNEL_2) != HAL_OK)
{
/* Starting Error */
Error_Handler();
}
/*##-5- Start the Input Capture in interrupt mode ##########################*/
if (HAL_TIM_IC_Start_IT(&htim3, TIM_CHANNEL_1) != HAL_OK)
{
/* Starting Error */
Error_Handler();
}
while (1)
{
}
}
/**
* @brief TIM2 is used to generate an output waveform
* (instead of using a function generator)
* @param None
* @retval None
*/
void WaveGeneration_Init(void)
{
TIM_MasterConfigTypeDef sMasterConfig;
TIM_OC_InitTypeDef sConfigOC;
htim2.Instance = TIM2;
htim2.Init.Prescaler = uhPrescalerValue;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = (SystemCoreClock/1)/aFrequency[0];
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
HAL_TIM_PWM_Init(&htim2);
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig);
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = ((SystemCoreClock/1)/aFrequency[0])/aDutyCycle[0];
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1);
}
/**
* @brief Init GPIO EXTI for push button
* @param None
* @retval None
*/
void UserButton_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
/*Configure GPIO pin : UserButton_Pin */
GPIO_InitStruct.Pin = GPIO_PIN_13;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/* EXTI interrupt init*/
HAL_NVIC_SetPriority(EXTI15_10_IRQn, 2, 0);
HAL_NVIC_EnableIRQ(EXTI15_10_IRQn);
}
/**
* @brief EXTI line detection callbacks
* @param GPIO_Pin: Specifies the pins connected EXTI line
* @retval None
*/
void UserButton_Callback()
{
/* Set new PWM signal frequency and duty cycle*/
iFrequency = (iFrequency + 1) % TIM_FREQUENCIES_NB;
iDutyCycle = (iDutyCycle + 1) % TIM_DUTYCYCLE_NB;
/* Set the auto-reload value to have the requested frequency */
/* Frequency = TIM2CLK / (ARR + 1) = SystemCoreClock / (ARR + 1) */
LL_TIM_SetAutoReload(TIM2, __LL_TIM_CALC_ARR(SystemCoreClock/1, LL_TIM_GetPrescaler(TIM2), aFrequency[iFrequency]));
/* Set duty cycle */
LL_TIM_OC_SetCompareCH1(TIM2, (LL_TIM_GetAutoReload(TIM2) / aDutyCycle[iDutyCycle]));
}
/**
* @brief Input Capture callback in non blocking mode
* @param htim : TIM IC handle
* @retval None
*/
void TimerCaptureCompare_Ch2_Callback()
{
/* Get the Input Capture value */
uwIC2Value = LL_TIM_IC_GetCaptureCH2(TIM3);
if (uwIC2Value != 0)
{
/* Duty cycle computation */
uwDutyCycle = (LL_TIM_IC_GetCaptureCH1(TIM3) * 100) / uwIC2Value;
/* uwFrequency computation
TIM3 freq = SystemCoreClock */
uwFrequency = SystemCoreClock / (1*uwIC2Value);
}
else
{
uwDutyCycle = 0;
uwFrequency = 0;
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* Turn LED2 on */
BSP_LED_On(LED2);
while (1)
{
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 100000000
* HCLK(Hz) = 100000000
* AHB Prescaler = 1
* APB1 Prescaler = 2
* APB2 Prescaler = 1
* HSI Frequency(Hz) = 8000000
* PLL_M = 8
* PLL_N = 400
* PLL_P = 4
* PLL_Q = 7
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 3
* @param None
* @retval None
*/
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
/* Enable Power Control clock */
__HAL_RCC_PWR_CLK_ENABLE();
/* The voltage scaling allows optimizing the power consumption when the device is
clocked below the maximum system frequency, to update the voltage scaling value
regarding system frequency refer to product datasheet. */
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/* Enable HSI Oscillator and activate PLL with HSI as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 400;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
RCC_OscInitStruct.PLL.PLLQ = 7;
if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3) != HAL_OK)
{
Error_Handler();
}
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/