2022-03-09 10:37:11 +01:00

355 lines
11 KiB
C

/**
******************************************************************************
* @file TIM/TIM_Encoder/Src/main.c
* @author MCD Application Team
* @brief This example shows how to configure the Timer in Encoder interface
* to determinate the rotation direction.
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F4xx_HAL_Examples
* @{
*/
/** @addtogroup TIM_Encoder
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define EMU_PERIOD (((SystemCoreClock/4)/10000) - 1)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
uint32_t uwDirection = 0;
/* Timer handler declaration that emulates a quadrature encoder outputs */
TIM_HandleTypeDef EmulatorHandle;
/* Timer handler declaration */
TIM_HandleTypeDef Encoder_Handle;
/* Timer Output Compare Configuration Structure declaration */
TIM_OC_InitTypeDef sConfig;
/* Timer Encoder Configuration Structure declaration */
TIM_Encoder_InitTypeDef sEncoderConfig;
/* Private function prototypes -----------------------------------------------*/
static void SystemClock_Config(void);
static void Error_Handler(void);
static void Init_TIM_Emulator(TIM_HandleTypeDef* htim);
static void Emulate_Forward_Direction(TIM_HandleTypeDef* htim);
static void Emulate_Backward_Direction(TIM_HandleTypeDef* htim);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/* STM32F4xx HAL library initialization:
- Configure the Flash prefetch, instruction and Data caches
- Configure the Systick to generate an interrupt each 1 msec
- Set NVIC Group Priority to 4
- Global MSP (MCU Support Package) initialization
*/
HAL_Init();
/* Configure the system clock to 168 MHz */
SystemClock_Config();
/* Configure LED1 and LED3 */
BSP_LED_Init(LED1);
BSP_LED_Init(LED3);
/* Initialize TIM3 to emulate a quadrature encoder outputs */
Init_TIM_Emulator(&EmulatorHandle);
/* -1- Initialize TIM1 to handle the encoder sensor */
/* Initialize TIM1 peripheral as follow:
+ Period = 65535
+ Prescaler = 0
+ ClockDivision = 0
+ Counter direction = Up
*/
Encoder_Handle.Instance = TIM1;
Encoder_Handle.Init.Period = 65535;
Encoder_Handle.Init.Prescaler = 0;
Encoder_Handle.Init.ClockDivision = 0;
Encoder_Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
Encoder_Handle.Init.RepetitionCounter = 0;
Encoder_Handle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
sEncoderConfig.EncoderMode = TIM_ENCODERMODE_TI12;
sEncoderConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
sEncoderConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
sEncoderConfig.IC1Prescaler = TIM_ICPSC_DIV1;
sEncoderConfig.IC1Filter = 0;
sEncoderConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
sEncoderConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
sEncoderConfig.IC2Prescaler = TIM_ICPSC_DIV1;
sEncoderConfig.IC2Filter = 0;
if(HAL_TIM_Encoder_Init(&Encoder_Handle, &sEncoderConfig) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/* Start the encoder interface */
HAL_TIM_Encoder_Start(&Encoder_Handle, TIM_CHANNEL_ALL);
/* Infinite loop */
while (1)
{
/* Step 1: */
/* Emulate a Forward direction */
Emulate_Forward_Direction(&EmulatorHandle);
/* Insert 1s delay */
HAL_Delay(1000);
/* Get the current direction */
uwDirection = __HAL_TIM_IS_TIM_COUNTING_DOWN(&Encoder_Handle);
/* Step 2: */
/* Emulate a Backward direction */
Emulate_Backward_Direction(&EmulatorHandle);
/* Insert 1s delay */
HAL_Delay(1000);
/* Get the current direction */
uwDirection = __HAL_TIM_IS_TIM_COUNTING_DOWN(&Encoder_Handle);
}
}
/**
* @brief Initialize a Timer to emulate an encoder sensor
* @param htim : TIM handle
* @retval None
*/
static void Init_TIM_Emulator(TIM_HandleTypeDef* htim)
{
/* Initialize TIM3 peripheral as follow:
+ Prescaler = 0
+ Period = 65535
+ ClockDivision = 0
+ Counter direction = Up
*/
htim->Instance = TIM3;
htim->Init.Period = EMU_PERIOD;
htim->Init.Prescaler = 0;
htim->Init.ClockDivision = 0;
htim->Init.CounterMode = TIM_COUNTERMODE_UP;
if(HAL_TIM_OC_Init(htim) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/*## Configure the Output Compare channels #########################################*/
/* Output Compare Toggle Mode configuration: Channel1 */
sConfig.OCMode = TIM_OCMODE_TOGGLE;
sConfig.Pulse = (EMU_PERIOD * 1 )/4;
sConfig.OCPolarity = TIM_OCPOLARITY_LOW;
if(HAL_TIM_OC_ConfigChannel(htim, &sConfig, TIM_CHANNEL_1) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/* Output Compare Toggle Mode configuration: Channel2 */
sConfig.Pulse = (EMU_PERIOD * 3 )/4;
if(HAL_TIM_OC_ConfigChannel(htim, &sConfig, TIM_CHANNEL_2) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
}
/**
* @brief Configures a Timer to emulate an encoder sensor outputs in Forward
* direction
* @param htim : TIM handle
* @retval None
*/
static void Emulate_Forward_Direction(TIM_HandleTypeDef* htim)
{
/*## -1- Re-Configure the Pulse ########################################## */
sConfig.Pulse = (EMU_PERIOD * 1 )/4;
if(HAL_TIM_OC_ConfigChannel(htim, &sConfig, TIM_CHANNEL_1) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
sConfig.Pulse = (EMU_PERIOD * 3 )/4;
if(HAL_TIM_OC_ConfigChannel(htim, &sConfig, TIM_CHANNEL_2) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/*## -2- Start signals generation ######################################### */
if(HAL_TIM_OC_Start(htim, TIM_CHANNEL_1) != HAL_OK)
{
/* Starting Error */
Error_Handler();
}
if(HAL_TIM_OC_Start(htim, TIM_CHANNEL_2) != HAL_OK)
{
/* Starting Error */
Error_Handler();
}
}
/**
* @brief Configures a Timer to emulate an encoder sensor outputs in Backward
* direction
* @param htim : TIM handle
* @retval None
*/
static void Emulate_Backward_Direction(TIM_HandleTypeDef* htim)
{
/*## -1- Re-Configure the Pulse ########################################## */
sConfig.Pulse = (EMU_PERIOD * 3 )/4;
if(HAL_TIM_OC_ConfigChannel(htim, &sConfig, TIM_CHANNEL_1) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
sConfig.Pulse = (EMU_PERIOD * 1 )/4;
if(HAL_TIM_OC_ConfigChannel(htim, &sConfig, TIM_CHANNEL_2) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/*## -2- Start signals generation ######################################### */
if(HAL_TIM_OC_Start(htim, TIM_CHANNEL_1) != HAL_OK)
{
/* Starting Error */
Error_Handler();
}
if(HAL_TIM_OC_Start(htim, TIM_CHANNEL_2) != HAL_OK)
{
/* Starting Error */
Error_Handler();
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 168000000
* HCLK(Hz) = 168000000
* AHB Prescaler = 1
* APB1 Prescaler = 4
* APB2 Prescaler = 2
* HSE Frequency(Hz) = 25000000
* PLL_M = 25
* PLL_N = 336
* PLL_P = 2
* PLL_Q = 7
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 5
* @param None
* @retval None
*/
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
/* Enable Power Control clock */
__HAL_RCC_PWR_CLK_ENABLE();
/* The voltage scaling allows optimizing the power consumption when the device is
clocked below the maximum system frequency, to update the voltage scaling value
regarding system frequency refer to product datasheet. */
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 25;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
HAL_RCC_OscConfig(&RCC_OscInitStruct);
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5);
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* Turn LED3 on */
BSP_LED_On(LED3);
while(1)
{
}
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/