2022-03-09 10:37:11 +01:00

335 lines
11 KiB
C

/**
******************************************************************************
* @file ADC/ADC_TripleModeInterleaved/Src/main.c
* @author MCD Application Team
* @brief This example provides a short description of how to use the ADC
* peripheral to convert a regular channel in Triple interleaved mode.
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F4xx_HAL_Examples
* @{
*/
/** @addtogroup ADC_TripleModeInterleaved
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* ADC handler declaration */
ADC_HandleTypeDef AdcHandle1;
ADC_HandleTypeDef AdcHandle2;
ADC_HandleTypeDef AdcHandle3;
/* Variable used to get converted value */
__IO uint32_t aADCTripleConvertedValue[3];
/* Private function prototypes -----------------------------------------------*/
static void SystemClock_Config(void);
static void Error_Handler(void);
static void ADC_Config(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/* STM32F4xx HAL library initialization:
- Configure the Flash prefetch, instruction and Data caches
- Configure the Systick to generate an interrupt each 1 msec
- Set NVIC Group Priority to 4
- Global MSP (MCU Support Package) initialization
*/
HAL_Init();
/* Configure the system clock to 144 MHz */
SystemClock_Config();
/* Configure LED1 and LED3 */
BSP_LED_Init(LED1);
BSP_LED_Init(LED3);
/*##-1- Configure ADC1, ADC2 and ADC3 peripherals ##########################*/
ADC_Config();
/*##-2- Start ADC3 conversion process ######################################*/
if(HAL_ADC_Start(&AdcHandle3) != HAL_OK)
{
/* Start Error */
Error_Handler();
}
/*##-3- Start ADC2 conversion process ######################################*/
if(HAL_ADC_Start(&AdcHandle2) != HAL_OK)
{
/* Start Error */
Error_Handler();
}
/*##-4- Start ADC1 conversion process and enable DMA #######################*/
/* Note: Considering IT occurring after each number of ADC conversions */
/* (IT by DMA end of transfer), select sampling time and ADC clock */
/* with sufficient duration to not create an overhead situation in */
/* IRQHandler. */
if(HAL_ADCEx_MultiModeStart_DMA(&AdcHandle1, (uint32_t*)aADCTripleConvertedValue, 3) != HAL_OK)
{
/* Start Error */
Error_Handler();
}
/* Infinite loop */
while (1)
{
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 144000000
* HCLK(Hz) = 144000000
* AHB Prescaler = 1
* APB1 Prescaler = 4
* APB2 Prescaler = 2
* HSE Frequency(Hz) = 25000000
* PLL_M = 25
* PLL_N = 288
* PLL_P = 2
* PLL_Q = 6
* VDD(V) = 3.3
* Main regulator output voltage = Scale2 mode
* Flash Latency(WS) = 5
* @param None
* @retval None
*/
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
/* Enable Power Control clock */
__HAL_RCC_PWR_CLK_ENABLE();
/* The voltage scaling allows optimizing the power consumption when the device is
clocked below the maximum system frequency, to update the voltage scaling value
regarding system frequency refer to product datasheet. */
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 25;
RCC_OscInitStruct.PLL.PLLN = 288;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 6;
HAL_RCC_OscConfig(&RCC_OscInitStruct);
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4);
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* Turn LED3 on */
BSP_LED_On(LED3);
while(1)
{
}
}
/**
* @brief ADC configuration
* @note This function Configure the ADC peripheral
1) Enable peripheral clocks
2) Configure ADC Channel 12 pin as analog input
3) DMA2_Stream0 channel2 configuration
4) Configure ADC1 Channel 12
5) Configure ADC2 Channel 12
6) Configure ADC3 Channel 12
* @param None
* @retval None
*/
static void ADC_Config(void)
{
ADC_ChannelConfTypeDef sConfig;
ADC_MultiModeTypeDef mode;
/*##-1- Configure the ADC3 peripheral #######################################*/
AdcHandle3.Instance = ADCz;
AdcHandle3.Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIV2;
AdcHandle3.Init.Resolution = ADC_RESOLUTION_12B;
AdcHandle3.Init.ScanConvMode = DISABLE;
AdcHandle3.Init.ContinuousConvMode = ENABLE;
AdcHandle3.Init.DiscontinuousConvMode = DISABLE;
AdcHandle3.Init.NbrOfDiscConversion = 0;
AdcHandle3.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
AdcHandle3.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1;
AdcHandle3.Init.DataAlign = ADC_DATAALIGN_RIGHT;
AdcHandle3.Init.NbrOfConversion = 1;
AdcHandle3.Init.DMAContinuousRequests = DISABLE;
AdcHandle3.Init.EOCSelection = DISABLE;
if(HAL_ADC_Init(&AdcHandle3) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/*##-2- Configure ADC3 regular channel #####################################*/
sConfig.Channel = ADCxyz_CHANNEL;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
sConfig.Offset = 0;
if(HAL_ADC_ConfigChannel(&AdcHandle3, &sConfig) != HAL_OK)
{
/* Channel Configuration Error */
Error_Handler();
}
/*##-3- Configure the ADC2 peripheral ######################################*/
AdcHandle2.Instance = ADCy;
AdcHandle2.Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIV2;
AdcHandle2.Init.Resolution = ADC_RESOLUTION_12B;
AdcHandle2.Init.ScanConvMode = DISABLE;
AdcHandle2.Init.ContinuousConvMode = ENABLE;
AdcHandle2.Init.DiscontinuousConvMode = DISABLE;
AdcHandle2.Init.NbrOfDiscConversion = 0;
AdcHandle2.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
AdcHandle2.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1;
AdcHandle2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
AdcHandle2.Init.NbrOfConversion = 1;
AdcHandle2.Init.DMAContinuousRequests = DISABLE;
AdcHandle2.Init.EOCSelection = DISABLE;
if(HAL_ADC_Init(&AdcHandle2) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/*##-4- Configure ADC2 regular channel #####################################*/
if(HAL_ADC_ConfigChannel(&AdcHandle2, &sConfig) != HAL_OK)
{
/* Channel Configuration Error */
Error_Handler();
}
/*##-5- Configure the ADC1 peripheral ######################################*/
AdcHandle1.Instance = ADCx;
AdcHandle1.Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIV2;
AdcHandle1.Init.Resolution = ADC_RESOLUTION_12B;
AdcHandle1.Init.ScanConvMode = DISABLE;
AdcHandle1.Init.ContinuousConvMode = ENABLE;
AdcHandle1.Init.DiscontinuousConvMode = DISABLE;
AdcHandle1.Init.NbrOfDiscConversion = 0;
AdcHandle1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
AdcHandle1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1;
AdcHandle1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
AdcHandle1.Init.NbrOfConversion = 1;
AdcHandle1.Init.DMAContinuousRequests = ENABLE;
AdcHandle1.Init.EOCSelection = DISABLE;
if(HAL_ADC_Init(&AdcHandle1) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/*##-6- Configure ADC1 regular channel #####################################*/
if(HAL_ADC_ConfigChannel(&AdcHandle1, &sConfig) != HAL_OK)
{
/* Channel Configuration Error */
Error_Handler();
}
/*##-7- Configure Multimode ################################################*/
mode.Mode = ADC_TRIPLEMODE_INTERL;
mode.DMAAccessMode = ADC_DMAACCESSMODE_2;
mode.TwoSamplingDelay = ADC_TWOSAMPLINGDELAY_5CYCLES;
if(HAL_ADCEx_MultiModeConfigChannel(&AdcHandle1, &mode) != HAL_OK)
{
/* Multimode Configuration Error */
Error_Handler();
}
}
/**
* @brief Conversion complete callback in non blocking mode
* @param hadc: ADC handle
* @note This example shows a simple way to report end of conversion, and
* you can add your own implementation.
* @retval None
*/
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
{
/* Turn LED1 on: Transfer process is correct */
BSP_LED_On(LED1);
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/