2022-03-09 10:37:11 +01:00

343 lines
11 KiB
C

/**
******************************************************************************
* @file LibJPEG/LibJPEG_Encoding/Src/main.c
* @author MCD Application Team
* @brief Main program body
* This sample code shows how to compress BMP file to JPEG file.
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private typedef -----------------------------------------------------------*/
typedef enum
{
APPLICATION_IDLE = 0,
APPLICATION_START
} MSC_ApplicationTypeDef;
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
FATFS USBDISK_FatFs; /* File system object for USB logical drive */
FIL MyFile, MyFile1; /* File object */
char USBDISKPath[4]; /* USB disk logical drive path */
RGB_typedef *RGB_matrix;
uint8_t _aucLine[2048];
uint32_t counter = 0, bytesread;
uint32_t offset = 0;
uint32_t line_counter = 0;
USBH_HandleTypeDef hUSBHost;
/* Variable to save the state of USB */
MSC_ApplicationTypeDef Appli_state = APPLICATION_IDLE;
DMA2D_HandleTypeDef DMA2DHandle;
/* Private function prototypes -----------------------------------------------*/
static void SystemClock_Config(void);
static uint8_t Jpeg_CallbackFunction(uint8_t* Row, uint32_t DataLength);
static void USBH_UserProcess(USBH_HandleTypeDef *phost, uint8_t id);
static void LCD_Config(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/* STM32F4xx HAL library initialization:
- Configure the Flash prefetch, instruction and Data caches
- Configure the Systick to generate an interrupt each 1 msec
- Set NVIC Group Priority to 4
- Global MSP (MCU Support Package) initialization
*/
HAL_Init();
/* Configure the system clock to 180 MHz */
SystemClock_Config();
/*##-1- LCD Configuration ##################################################*/
LCD_Config();
/*##-2- Link the USB Host disk I/O driver ##################################*/
if(FATFS_LinkDriver(&USBH_Driver, USBDISKPath) == 0)
{
/*##-3- Init Host Library ################################################*/
USBH_Init(&hUSBHost, USBH_UserProcess, 0);
/*##-4- Add Supported Class ##############################################*/
USBH_RegisterClass(&hUSBHost, USBH_MSC_CLASS);
/*##-5- Start Host Process ###############################################*/
USBH_Start(&hUSBHost);
/*##-6- Run Application (Blocking mode) ##################################*/
while (1)
{
/* USB Host Background task */
USBH_Process(&hUSBHost);
/* Mass Storage Application State Machine */
switch(Appli_state)
{
case APPLICATION_START:
/*##-4- Create and Open a new jpg image file with write access #######*/
if(f_open(&MyFile1, "image.jpg", FA_CREATE_ALWAYS | FA_WRITE) == FR_OK)
{
/*##-5- Open the BMP image with read access ########################*/
if(f_open(&MyFile, "image.bmp", FA_READ) == FR_OK)
{
/*##-6- Jpeg encoding ############################################*/
jpeg_encode(&MyFile, &MyFile1, IMAGE_WIDTH, IMAGE_HEIGHT, IMAGE_QUALITY, _aucLine);
/* Close the BMP and JPEG files */
f_close(&MyFile1);
f_close(&MyFile);
/*##-7- Jpeg decoding ############################################*/
/* Open the BMP file for read */
if(f_open(&MyFile1, "image.jpg", FA_READ) == FR_OK)
{
/* Jpeg Decoding for display to LCD */
jpeg_decode(&MyFile1, IMAGE_WIDTH, _aucLine, Jpeg_CallbackFunction);
/* Close the BMP file */
f_close(&MyFile1);
}
}
}
Appli_state = APPLICATION_IDLE;
break;
case APPLICATION_IDLE:
default:
break;
}
}
}
/* Infinite loop */
while (1)
{
}
}
/**
* @brief Copy decompressed data to display buffer.
* @param Row: Output row buffer
* @param DataLength: Row width in output buffer
* @retval None
*/
static uint8_t Jpeg_CallbackFunction(uint8_t* Row, uint32_t DataLength)
{
#ifdef DONT_USE_DMA2D
uint32_t ARGB32Buffer[IMAGE_WIDTH];
RGB_matrix = (RGB_typedef*)Row;
for(counter = 0; counter < IMAGE_WIDTH; counter++)
{
ARGB32Buffer[counter] = (uint32_t)
(
((RGB_matrix[counter].B << 16)|
(RGB_matrix[counter].G << 8)|
(RGB_matrix[counter].R) | 0xFF000000)
);
*(__IO uint32_t *)(LCD_BUFFER + (counter*4) + (IMAGE_WIDTH * line_counter * 4)) = ARGB32Buffer[counter];
}
#endif
#ifdef USE_DMA2D
offset = LCD_BUFFER + (IMAGE_WIDTH * (IMAGE_HEIGHT - line_counter - 1) * 4);
/* Configure the DMA2D Mode, Color Mode and output offset */
DMA2DHandle.Init.Mode = DMA2D_M2M_PFC;
DMA2DHandle.Init.ColorMode = DMA2D_ARGB8888;
DMA2DHandle.Init.OutputOffset = 0;
/* Foreground Configuration */
DMA2DHandle.LayerCfg[1].AlphaMode = DMA2D_NO_MODIF_ALPHA;
DMA2DHandle.LayerCfg[1].InputAlpha = 0xFF;
DMA2DHandle.LayerCfg[1].InputColorMode = DMA2D_INPUT_RGB888;
DMA2DHandle.LayerCfg[1].InputOffset = 0;
DMA2DHandle.Instance = DMA2D;
/* DMA2D Initialization */
if(HAL_DMA2D_Init(&DMA2DHandle) == HAL_OK)
{
if(HAL_DMA2D_ConfigLayer(&DMA2DHandle, 1) == HAL_OK)
{
if (HAL_DMA2D_Start(&DMA2DHandle, (uint32_t)Row, (uint32_t)offset, IMAGE_WIDTH, 1) == HAL_OK)
{
/* Polling For DMA transfer */
HAL_DMA2D_PollForTransfer(&DMA2DHandle, 10);
}
}
}
#endif
#ifdef SWAP_RB
uint32_t pixel = 0, result = 0, result1 = 0;
for(counter = 0; counter < IMAGE_WIDTH; counter++)
{
pixel = *(__IO uint32_t *)(LCD_BUFFER + (counter*4) + (IMAGE_WIDTH * line_counter * 4));
result1 = (((pixel & 0x00FF0000) >> 16) | ((pixel & 0x000000FF) << 16));
pixel = pixel & 0xFF00FF00;
result = (result1 | pixel);
*(__IO uint32_t *)(LCD_BUFFER + (counter*4) + (IMAGE_WIDTH * line_counter * 4)) = result;
}
#endif
line_counter++;
return 0;
}
/**
* @brief LCD Configuration.
* @param None
* @retval None
*/
static void LCD_Config(void)
{
/* Initialize the LCD */
BSP_LCD_Init();
/* Background Layer Initialization */
BSP_LCD_LayerDefaultInit(0, LCD_BUFFER);
/* Set Foreground Layer */
BSP_LCD_SelectLayer(0);
/* Enable the LCD */
BSP_LCD_DisplayOn();
/* Set the layer window */
BSP_LCD_SetLayerWindow(0, 0, 0, IMAGE_WIDTH, IMAGE_HEIGHT);
/* Clear the LCD Background layer */
BSP_LCD_Clear(LCD_COLOR_WHITE);
}
/**
* @brief User Process
* @param None
* @retval None
*/
static void USBH_UserProcess(USBH_HandleTypeDef *phost, uint8_t id)
{
switch (id)
{
case HOST_USER_DISCONNECTION:
Appli_state = APPLICATION_IDLE;
if (f_mount(0, "", 0) != FR_OK)
{
/* FatFs Initialization Error */
}
break;
case HOST_USER_CONNECTION:
Appli_state = APPLICATION_IDLE;
if (f_mount(&USBDISK_FatFs, "", 0) != FR_OK)
{
/* FatFs Initialization Error */
}
break;
case HOST_USER_CLASS_ACTIVE:
Appli_state = APPLICATION_START;
break;
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 168000000
* HCLK(Hz) = 168000000
* AHB Prescaler = 1
* APB1 Prescaler = 4
* APB2 Prescaler = 2
* HSE Frequency(Hz) = 8000000
* PLL_M = 8
* PLL_N = 336
* PLL_P = 2
* PLL_Q = 7
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 5
* @param None
* @retval None
*/
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
/* Enable Power Control clock */
__HAL_RCC_PWR_CLK_ENABLE();
/* The voltage scaling allows optimizing the power consumption when the device is
clocked below the maximum system frequency, to update the voltage scaling value
regarding system frequency refer to product datasheet. */
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
HAL_RCC_OscConfig (&RCC_OscInitStruct);
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5);
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif