/** ****************************************************************************** * @file TIM/TIM_OnePulse/Src/main.c * @author MCD Application Team * @brief This sample code shows how to use TIM HAL API to generate * a one pulse signal ****************************************************************************** * @attention * *

© Copyright (c) 2017 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F4xx_HAL_Examples * @{ */ /** @addtogroup TIM_OnePulse * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Timer handler declaration */ TIM_HandleTypeDef TimHandle; /* Prescaler value declartion*/ uint32_t uwPrescalerValue = 0; /* Timer One Pulse Configuration Structure declaration */ TIM_OnePulse_InitTypeDef sConfig; /* Private function prototypes -----------------------------------------------*/ static void SystemClock_Config(void); static void Error_Handler(void); /* Private functions ---------------------------------------------------------*/ /** * @brief Main program. * @param None * @retval None */ int main(void) { /* STM32F4xx HAL library initialization: - Configure the Flash prefetch - Systick timer is configured by default as source of time base, but user can eventually implement his proper time base source (a general purpose timer for example or other time source), keeping in mind that Time base duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and handled in milliseconds basis. - Set NVIC Group Priority to 4 - Low Level Initialization */ HAL_Init(); /*##1 Configure the system clock to 100 MHz */ SystemClock_Config(); /* Configure LED3 */ BSP_LED_Init(LED3); /*##2 Compute the prescaler value, to have TIM3Freq = 25000000 Hz * TIM3 input clock is set to APB1 clock (PCLK1), * if (APB1 prescaler = 1) x1 else x2 * prescaler is 2. * TIM1CLK = (HCLK/2) x2 = HCLK * TIM3CLK = SystemCoreClock * * Prescaler = (TIM3CLK /TIM3 counter clock) - 1 * * The prescaler value is computed in order to have TIM3 counter clock * set at 25000000 Hz. */ uwPrescalerValue = (uint32_t)((SystemCoreClock) / 25000000) - 1; /*##-3- Configure the TIM peripheral ####################################### * *-The external signal is connected to TIM3_CH2 pin (PB.05), * and a rising edge on this input is used to trigger the Timer. * *-The One Pulse signal is output on TIM3_CH1 (PB.04). * * The delay value is fixed to: * - Delay = CCR1/TIM3 counter clock * = 16383 / 25000000 [sec] * * The pulse value is fixed to : * - Pulse value = (TIM_Period - TIM_Pulse)/TIM3 counter clock * = (65535 - 16383) / 25000000 [sec] * * ------------------------------------------------------------------------ */ TimHandle.Instance = TIMx; TimHandle.Init.Period = 0xFFFF; TimHandle.Init.Prescaler = uwPrescalerValue; TimHandle.Init.ClockDivision = 0; TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP; TimHandle.Init.RepetitionCounter = 0; TimHandle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_OnePulse_Init(&TimHandle, TIM_OPMODE_SINGLE) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /*##-2- Configure the Channel 1 in One Pulse mode ##########################*/ sConfig.OCMode = TIM_OCMODE_PWM2; sConfig.OCPolarity = TIM_OCPOLARITY_HIGH; sConfig.Pulse = 16383; sConfig.ICPolarity = TIM_ICPOLARITY_RISING; sConfig.ICSelection = TIM_ICSELECTION_DIRECTTI; sConfig.ICFilter = 0; sConfig.OCNPolarity = TIM_OCNPOLARITY_HIGH; sConfig.OCIdleState = TIM_OCIDLESTATE_RESET; sConfig.OCNIdleState = TIM_OCNIDLESTATE_RESET; if (HAL_TIM_OnePulse_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_1, TIM_CHANNEL_2) != HAL_OK) { /* Configuration Error */ Error_Handler(); } /*##-4- Start the One Pulse mode ####################################### * * * The one pulse waveform can be displayed using an oscilloscope and it looks * like this. * * ____ * | | * CH2 _________________________| |_________________________________________ * * ___________________________ * | | * CH1 ______________________________________| |____ * <---Delay----><------Pulse---------------> * * * * * */ if (HAL_TIM_OnePulse_Start(&TimHandle, TIM_CHANNEL_1) != HAL_OK) { /* Starting Error */ Error_Handler(); } while (1) { } } /** * @brief This function is executed in case of error occurrence. * @param None * @retval None */ static void Error_Handler(void) { /* Turn LED3 on */ BSP_LED_On(LED3); while (1) { } } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 100000000 * HCLK(Hz) = 100000000 * AHB Prescaler = 1 * APB1 Prescaler = 2 * APB2 Prescaler = 1 * HSE Frequency(Hz) = 8000000 * PLL_M = 8 * PLL_N = 200 * PLL_P = 2 * PLL_Q = 7 * PLL_R = 2 * VDD(V) = 3.3 * Main regulator output voltage = Scale1 mode * Flash Latency(WS) = 3 * @param None * @retval None */ static void SystemClock_Config(void) { RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct; HAL_StatusTypeDef ret = HAL_OK; /* Enable Power Control clock */ __HAL_RCC_PWR_CLK_ENABLE(); /* The voltage scaling allows optimizing the power consumption when the device is clocked below the maximum system frequency, to update the voltage scaling value regarding system frequency refer to product datasheet. */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /* Enable HSE Oscillator and activate PLL with HSE as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 8; RCC_OscInitStruct.PLL.PLLN = 200; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 7; RCC_OscInitStruct.PLL.PLLR = 2; ret = HAL_RCC_OscConfig(&RCC_OscInitStruct); if(ret != HAL_OK) { while(1) { ; } } /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3); if(ret != HAL_OK) { while(1) { ; } } } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/