/** ****************************************************************************** * @file system_stm32f4xx.c * @author MCD Application Team * @brief CMSIS Cortex-M4 Device Peripheral Access Layer System Source File. * * This file provides two functions and one global variable to be called from * user application: * - SystemInit(): This function is called at startup just after reset and * before branch to main program. This call is made inside * the "startup_stm32f4xx.s" file. * * - SystemCoreClock variable: Contains the core clock (HCLK), it can be used * by the user application to setup the SysTick * timer or configure other parameters. * * - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must * be called whenever the core clock is changed * during program execution. * - SystemInit_ExtMemCtl(): Configures the GPIO and the QSPI in order to * access the external QSPI memory at the init. * This function is called when the switch DATA_IN_QSPI * is activated. * * - SetSysClk(): This function is called when the switch DATA_IN_QSPI is * activated, it configures the clock at 180s MHz with the PLL * activated. It allows to access QSPI memory with high speed. * * ****************************************************************************** * @attention * *

© Copyright (c) 2017 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /** @addtogroup CMSIS * @{ */ /** @addtogroup stm32f4xx_system * @{ */ /** @addtogroup STM32F4xx_System_Private_Includes * @{ */ #include "stm32f4xx.h" #if !defined (HSE_VALUE) #if defined(USE_STM32469I_DISCO_REVA) #define HSE_VALUE ((uint32_t)25000000) /*!< Default value of the External oscillator in Hz */ #else #define HSE_VALUE ((uint32_t)8000000) /*!< Default value of the External oscillator in Hz */ #endif /* USE_STM32469I_DISCO_REVA */ #endif /* HSE_VALUE */ #if !defined (HSI_VALUE) #define HSI_VALUE ((uint32_t)16000000) /*!< Value of the Internal oscillator in Hz*/ #endif /* HSI_VALUE */ /** * @} */ /** @addtogroup STM32F4xx_System_Private_TypesDefinitions * @{ */ /** * @} */ /** @addtogroup STM32F4xx_System_Private_Defines * @{ */ /************************* Miscellaneous Configuration ************************/ /*!< Uncomment the following line if you need to use QSPI memory mounted on DK as data memory */ #define DATA_IN_QSPI /*!< Uncomment the following line if you need to relocate your vector Table in Internal SRAM. */ /* #define VECT_TAB_SRAM */ #define VECT_TAB_OFFSET 0x00 /*!< Vector Table base offset field. This value must be a multiple of 0x200. */ /******************************************************************************/ /** * @} */ /** @addtogroup STM32F4xx_System_Private_Macros * @{ */ /** * @} */ /** @addtogroup STM32F4xx_System_Private_Variables * @{ */ /* This variable is updated in three ways: 1) by calling CMSIS function SystemCoreClockUpdate() 2) by calling HAL API function HAL_RCC_GetHCLKFreq() 3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency Note: If you use this function to configure the system clock; then there is no need to call the 2 first functions listed above, since SystemCoreClock variable is updated automatically. */ #if defined(__CC_ARM) uint32_t SystemCoreClock __attribute__((section("NoInit"),zero_init)); /* Uninitialized Variable */ #elif defined(__ICCARM__) __no_init uint32_t SystemCoreClock; #elif defined(__GNUC__) uint32_t SystemCoreClock = 16000000; #endif const uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9}; const uint8_t APBPrescTable[8] = {0, 0, 0, 0, 1, 2, 3, 4}; /** * @} */ /** @addtogroup STM32F4xx_System_Private_FunctionPrototypes * @{ */ #if defined (DATA_IN_QSPI) static void SetSysClk(void); static void SystemInit_ExtMemCtl(void); #endif /* DATA_IN_QSPI */ /** * @} */ /** @addtogroup STM32F4xx_System_Private_Functions * @{ */ /** * @brief Setup the microcontroller system * Initialize the FPU setting, vector table location and External memory * configuration. * @param None * @retval None */ void SystemInit(void) { SystemCoreClock = 16000000; /* FPU settings ------------------------------------------------------------*/ #if (__FPU_PRESENT == 1) && (__FPU_USED == 1) SCB->CPACR |= ((3UL << 10*2)|(3UL << 11*2)); /* set CP10 and CP11 Full Access */ #endif /* Reset the RCC clock configuration to the default reset state ------------*/ /* Set HSION bit */ RCC->CR |= (uint32_t)0x00000001; /* Reset CFGR register */ RCC->CFGR = 0x00000000; /* Reset HSEON, CSSON and PLLON bits */ RCC->CR &= (uint32_t)0xFEF6FFFF; /* Reset PLLCFGR register */ RCC->PLLCFGR = 0x24003010; /* Reset HSEBYP bit */ RCC->CR &= (uint32_t)0xFFFBFFFF; /* Disable all interrupts */ RCC->CIR = 0x00000000; #if defined (DATA_IN_QSPI) SetSysClk(); SystemInit_ExtMemCtl(); #endif /* DATA_IN_QSPI */ /* Configure the Vector Table location add offset address ------------------*/ #ifdef VECT_TAB_SRAM SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM */ #else SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH */ #endif } /** * @brief Update SystemCoreClock variable according to Clock Register Values. * The SystemCoreClock variable contains the core clock (HCLK), it can * be used by the user application to setup the SysTick timer or configure * other parameters. * * @note Each time the core clock (HCLK) changes, this function must be called * to update SystemCoreClock variable value. Otherwise, any configuration * based on this variable will be incorrect. * * @note - The system frequency computed by this function is not the real * frequency in the chip. It is calculated based on the predefined * constant and the selected clock source: * * - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*) * * - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**) * * - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**) * or HSI_VALUE(*) multiplied/divided by the PLL factors. * * (*) HSI_VALUE is a constant defined in stm32f4xx_hal_conf.h file (default value * 16 MHz) but the real value may vary depending on the variations * in voltage and temperature. * * (**) HSE_VALUE is a constant defined in stm32f4xx_hal_conf.h file (its value * depends on the application requirements), user has to ensure that HSE_VALUE * is same as the real frequency of the crystal used. Otherwise, this function * may have wrong result. * * - The result of this function could be not correct when using fractional * value for HSE crystal. * * @param None * @retval None */ void SystemCoreClockUpdate(void) { uint32_t tmp = 0, pllvco = 0, pllp = 2, pllsource = 0, pllm = 2; /* Get SYSCLK source -------------------------------------------------------*/ tmp = RCC->CFGR & RCC_CFGR_SWS; switch (tmp) { case 0x00: /* HSI used as system clock source */ SystemCoreClock = HSI_VALUE; break; case 0x04: /* HSE used as system clock source */ SystemCoreClock = HSE_VALUE; break; case 0x08: /* PLL used as system clock source */ /* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLL_M) * PLL_N SYSCLK = PLL_VCO / PLL_P */ pllsource = (RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) >> 22; pllm = RCC->PLLCFGR & RCC_PLLCFGR_PLLM; if (pllsource != 0) { /* HSE used as PLL clock source */ pllvco = (HSE_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 6); } else { /* HSI used as PLL clock source */ pllvco = (HSI_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 6); } pllp = (((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) >>16) + 1 ) *2; SystemCoreClock = pllvco/pllp; break; default: SystemCoreClock = HSI_VALUE; break; } /* Compute HCLK frequency --------------------------------------------------*/ /* Get HCLK prescaler */ tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4)]; /* HCLK frequency */ SystemCoreClock >>= tmp; } #if defined (DATA_IN_QSPI) /** * @brief Configures the clock at 180MHz. * Called in startup_stm32f4xx.s before jump to main. * This function configures the clock for fast access to external memories * @param None * @retval None */ void SetSysClk(void) { register uint32_t tmpreg = 0, timeout = 0xFFFF; /******************************************************************************/ /* PLL (clocked by HSE) used as System clock source */ /******************************************************************************/ /************************* PLL Parameters for clock at 180MHz******************/ uint32_t PLL_M = 8,PLL_Q = 7, PLL_R = 2, PLL_N = 360, PLL_P = 2; /* Enable Power Control clock */ RCC->APB1ENR |= RCC_APB1ENR_PWREN; /* Config Voltage Scale 1 */ PWR->CR |= PWR_CR_VOS; /* Enable HSE */ RCC->CR |= ((uint32_t)RCC_CR_HSEON); /* Wait till HSE is ready and if Time out is reached exit */ do { tmpreg = RCC->CR & RCC_CR_HSERDY; } while((tmpreg != RCC_CR_HSERDY) && (timeout-- > 0)); if(timeout != 0) { /* Select regulator voltage output Scale 1 mode */ RCC->APB1ENR |= RCC_APB1ENR_PWREN; PWR->CR |= PWR_CR_VOS_1; /* Enable Over Drive to reach the 180MHz frequency */ /* Enable ODEN */ PWR->CR |= 0x00010000; timeout = 0xFFFF; /* Wait till ODR is ready and if Time out is reached exit */ do { tmpreg = PWR->CSR & PWR_CSR_ODRDY; } while((tmpreg != PWR_CSR_ODRDY) && (timeout-- > 0)); /* Enable ODSW */ PWR->CR |= 0x00020000; timeout = 0xFFFF; /* Wait till ODR is ready and if Time out is reached exit */ do { tmpreg = PWR->CSR & PWR_CSR_ODSWRDY; } while((tmpreg != PWR_CSR_ODSWRDY) && (timeout-- > 0)); /* HCLK = SYSCLK / 1*/ RCC->CFGR |= RCC_CFGR_HPRE_DIV1; /* PCLK2 = HCLK / 2*/ RCC->CFGR |= RCC_CFGR_PPRE2_DIV2; /* PCLK1 = HCLK / 4*/ RCC->CFGR |= RCC_CFGR_PPRE1_DIV4; /* Configure the main PLL */ RCC->PLLCFGR = PLL_M | (PLL_N << 6) | (((PLL_P >> 1) -1) << 16) | (RCC_PLLCFGR_PLLSRC_HSE) | (PLL_Q << 24) | (PLL_R << 28); /* Enable the main PLL */ RCC->CR |= RCC_CR_PLLON; } /* Wait that PLL is ready */ timeout = 0xFFFF; do { tmpreg = (RCC->CR & RCC_CR_PLLRDY); } while((tmpreg != RCC_CR_PLLRDY) && (timeout-- > 0)); if(timeout != 0) { /* Configure Flash prefetch, Instruction cache, Data cache and wait state */ FLASH->ACR = FLASH_ACR_PRFTEN | FLASH_ACR_ICEN |FLASH_ACR_DCEN |FLASH_ACR_LATENCY_5WS; /* Select the main PLL as system clock source */ RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW)); RCC->CFGR |= RCC_CFGR_SW_PLL; timeout = 0xFFFF; do { tmpreg = (RCC->CFGR & RCC_CFGR_SWS); } while((tmpreg != RCC_CFGR_SWS) && (timeout-- > 0)); } SystemCoreClockUpdate(); } /** * @brief Setup the external memory controller. * Configures the GPIO and the QSPI in order to access the external * QSPI memory at the init. * This function is called when the switch DATA_IN_QSPI is activated in * SystemInit() before jump to main. * @param None * @retval None */ void SystemInit_ExtMemCtl(void) { /****************************************************************************/ /* */ /* Configuration of the IOs : */ /* -------------------------- */ /* GPIOF10 : CLK */ /* GPIOB6 : BK1_nCS */ /* GPIOF8 : BK1_IO0/SO */ /* GPIOF9 : BK1_IO1/SI */ /* GPIOF7 : BK1_IO2 */ /* GPIOF6 : BK1_IO3 */ /* */ /* Configuration of the QSPI : */ /* --------------------------- */ /* - Instruction is on one single line */ /* - Address is 32-bits on four lines */ /* - No alternate bytes */ /* - Ten dummy cycles */ /* - Data is on four lines */ /* */ /* If the clock is changed : */ /* ------------------------- */ /* - Modify the prescaler in the control register */ /* - Update the number of dummy cycles on the memory side and on */ /* communication configuration register */ /* */ /* If the memory is changed : */ /* -------------------------- */ /* - Update the device configuration register with the memory configuration */ /* - Modify the instructions with the instruction set of the memory */ /* - Configure the number of dummy cycles as described in memory datasheet */ /* - Modify the data size and alternate bytes according memory datasheet */ /* */ /****************************************************************************/ register uint32_t tmpreg = 0, datareg = 0,tmp = 0, timeout = 0xFFFF; /*--------------------------------------------------------------------------*/ /*------------------ Activation of the peripheral clocks -------------------*/ /*--------------------------------------------------------------------------*/ /* Enable GPIOB and GPIOF interface clock */ /* Enable clock of the QSPI */ RCC->AHB3ENR |= 0x00000002; RCC->AHB1ENR |= RCC_AHB1ENR_GPIOFEN; RCC->AHB1ENR |= RCC_AHB1ENR_GPIOBEN; /*--------------------------------------------------------------------------*/ /*--------------------- Configuration of the I/O pins ----------------------*/ /*--------------------------------------------------------------------------*/ /* Configure alternate function selection for IO pins */ GPIOF->AFR[0] = 0x99000000; GPIOF->AFR[1] = 0x000009AA; GPIOB->AFR[0] = 0x0A000000; /* Configure alternate function mode for IO pins */ GPIOF->MODER = 0x002AA000; GPIOB->MODER = 0x00002280; /* Configure output speed for IO pins */ GPIOF->OSPEEDR = 0x003FF000; GPIOB->OSPEEDR = 0x000030C0; /* Configure pull-up or pull-down for IO pins */ GPIOB->PUPDR = 0x00001100; /*--------------------------------------------------------------------------*/ /*----------------------- Initialization of the QSPI -----------------------*/ /*--------------------------------------------------------------------------*/ timeout = 0xFFFF; do { tmpreg = (QUADSPI->SR & QUADSPI_SR_BUSY); } while((tmpreg != 0) && (timeout-- > 0)); if (timeout != 0) { /* Configure device configuration register of QSPI */ /* - FSIZE = 23 */ QUADSPI->DCR = QUADSPI_DCR_CSHT_0| 23<<16; /* Configure control register of QSPI: precsaler, sample shift and enable QSPI */ QUADSPI->CR = (1 << 24) | QUADSPI_CR_SSHIFT|QUADSPI_CR_EN; } /*--------------------------------------------------------------------------*/ /*----------- Configuration of the dummy cycles on flash side --------------*/ /*--------------------------------------------------------------------------*/ /* Configure communication register to read volatile configuration register */ /* - FMODE = Indirect read - DMODE = Data on a single line - IMODE = Instruction on a single line - INSTRUCTION = READ_VOL_CFG_REG_CMD */ tmp = QUADSPI->CCR; tmp = tmp& (~(QUADSPI_CCR_FMODE | QUADSPI_CCR_DMODE | QUADSPI_CCR_IMODE | QUADSPI_CCR_INSTRUCTION)); tmp |= (QUADSPI_CCR_FMODE_0 | QUADSPI_CCR_DMODE_0 | QUADSPI_CCR_IMODE_0 | 0x85); QUADSPI->CCR = tmp; /* Wait that the transfer is complete */ timeout = 0xFFFF; do { tmpreg = (QUADSPI->SR & QUADSPI_SR_TCF); } while((tmpreg == 0) && (timeout-- > 0)); if (timeout != 0) { /* Read received value */ datareg = QUADSPI->DR; /* Clear transfer complete flag */ QUADSPI->FCR = QUADSPI_FCR_CTCF; /* Perform abort (mandatory workaround for this version of QSPI) */ tmp = QUADSPI->CR; tmp = (tmp&(~QUADSPI_CR_ABORT)); QUADSPI->CR = tmp|QUADSPI_CR_ABORT; /* Wait that the transfer is complete */ timeout = 0xFFFF; do { tmpreg = (QUADSPI->SR & QUADSPI_SR_TCF); } while((tmpreg == 0) && (timeout-- > 0)); if (timeout != 0) { /* Clear transfer complete flag */ QUADSPI->FCR = QUADSPI_FCR_CTCF; /* Configure communication register to enable write operations */ tmp = QUADSPI->CCR; tmp = tmp& (~(QUADSPI_CCR_FMODE | QUADSPI_CCR_DMODE | QUADSPI_CCR_INSTRUCTION)); tmp |= 0x06; QUADSPI->CCR = tmp; /* Wait that the transfer is complete */ timeout = 0xFFFF; do { tmpreg = (QUADSPI->SR & QUADSPI_SR_TCF); } while((tmpreg == 0) && (timeout-- > 0)); if (timeout != 0) { /* Clear transfer complete flag */ QUADSPI->FCR = QUADSPI_FCR_CTCF; /* Configure the mask for the auto-polling mode on write enable bit of status register */ QUADSPI->PSMKR = 0x2; /* Configure the value for the auto-polling mode on write enable bit of status register */ QUADSPI->PSMAR = 0x2; /* Configure the auto-polling interval */ QUADSPI->PIR = 0x10; /* Configure control register to automatically stop the auto-polling mode */ QUADSPI->CR = (QUADSPI->CR&(~QUADSPI_CR_APMS)); QUADSPI->CR |= QUADSPI_CR_APMS; /* Configure communication register to perform auto-polling mode on status register */ tmp = QUADSPI->CCR; tmp = tmp& (~(QUADSPI_CCR_FMODE | QUADSPI_CCR_DMODE | QUADSPI_CCR_INSTRUCTION)); tmp |= (QUADSPI_CCR_FMODE_1 | QUADSPI_CCR_DMODE_0 | 0x05); QUADSPI->CCR = tmp; /* Wait that the status match occurs */ timeout = 0xFFFF; do { tmpreg = (QUADSPI->SR & QUADSPI_SR_SMF); } while((tmpreg == 0) && (timeout-- > 0)); if (timeout != 0) { /* Clear status match flag */ QUADSPI->FCR = QUADSPI_FCR_CSMF; /* Write volatile configuration register with new dummy cycles */ datareg = (datareg&0xF)| 10<<4; /* Configure communication register to write volatile configuration register */ tmp = QUADSPI->CCR; tmp = tmp& (~(QUADSPI_CCR_FMODE | QUADSPI_CCR_INSTRUCTION)); tmp |= 0x81; QUADSPI->CCR = tmp; /* Write the value to transmit */ QUADSPI->DR = datareg; /* Wait that the transfer is complete */ timeout = 0xFFFF; do { tmpreg = (QUADSPI->SR & QUADSPI_SR_TCF); } while((tmpreg == 0) && (timeout-- > 0)); if (timeout != 0) { /* Clear transfer complete flag */ QUADSPI->FCR = QUADSPI_FCR_CTCF; /* Perform abort (mandatory workaround for this version of QSPI) */ tmp = QUADSPI->CR; tmp = (tmp&(~QUADSPI_CR_ABORT)); QUADSPI->CR = tmp|QUADSPI_CR_ABORT; /* Wait that the transfer is complete */ timeout = 0xFFFF; do { tmpreg = (QUADSPI->SR & QUADSPI_SR_TCF); } while((tmpreg == 0) && (timeout-- > 0)); if (timeout != 0) { /* Clear transfer complete flag */ QUADSPI->FCR = QUADSPI_FCR_CTCF; /*------------------------------------------------------------*/ /*--------- Configuration of the memory-mapped mode ----------*/ /*------------------------------------------------------------*/ /* Configure communication register for reading sequence in memory-mapped mode */ /* - FMODE = Memory-mapped - DMODE = Data on four lines - DCYC = 10 - ADSIZE = 32-bit address - ADMODE = Address on four lines - IMODE = Instruction on a single line - INSTRUCTION = QUAD_INOUT_FAST_READ_4_BYTE_ADDR_CMD */ tmp = QUADSPI->CCR; tmp = tmp& (~(QUADSPI_CCR_FMODE | QUADSPI_CCR_DMODE | QUADSPI_CCR_DCYC | QUADSPI_CCR_ADSIZE | QUADSPI_CCR_ADMODE | QUADSPI_CCR_INSTRUCTION)); tmp |= (QUADSPI_CCR_FMODE | QUADSPI_CCR_DMODE | (10 << POSITION_VAL(QUADSPI_CCR_DCYC)) | QUADSPI_CCR_ADSIZE_1 | QUADSPI_CCR_ADMODE | 0xEB); QUADSPI->CCR = tmp; } } } } } } } #endif /* DATA_IN_QSPI */ /** * @} */ /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/