/** ****************************************************************************** * @file TIM/TIM_OCToggle/Src/main.c * @author MCD Application Team * @brief This example shows how to configure the Timer to generate four different * signals with four different frequencies. ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F4xx_HAL_Examples * @{ */ /** @addtogroup TIM_OCToggle * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ __IO uint32_t uhCCR1_Val = 32051; __IO uint32_t uhCCR2_Val = 16025; __IO uint32_t uhCCR3_Val = 8012; __IO uint32_t uhCCR4_Val = 4006; uint32_t uhCapture = 0; /* Timer handler declaration */ TIM_HandleTypeDef TimHandle; /* Timer Output Compare Configuration Structure declaration */ TIM_OC_InitTypeDef sConfig; /* Counter Prescaler value */ uint32_t uwPrescalerValue = 0; /* Private function prototypes -----------------------------------------------*/ static void SystemClock_Config(void); static void Error_Handler(void); /* Private functions ---------------------------------------------------------*/ /** * @brief Main program. * @param None * @retval None */ int main(void) { /* STM32F4xx HAL library initialization: - Configure the Flash prefetch - Systick timer is configured by default as source of time base, but user can eventually implement his proper time base source (a general purpose timer for example or other time source), keeping in mind that Time base duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and handled in milliseconds basis. - Set NVIC Group Priority to 4 - Low Level Initialization */ HAL_Init(); /* Configure the system clock to 100 MHz */ SystemClock_Config(); /* Configure LED3 */ BSP_LED_Init(LED3); /*##-1- Configure the TIM peripheral #######################################*/ /* --------------------------------------------------------------------------- TIM4 Configuration: Output Compare Toggle Mode: To get TIM4 counter clock at 12.5 MHz, the prescaler is computed as follows: Prescaler = (TIM4CLK / TIM4 counter clock) - 1 Prescaler = (SystemCoreClock /12500000) - 1 CC1 update rate = TIM4 counter clock / uhCCR1_Val = 12.5 MHz/32051 = 390 Hz ==> So the TIM4 Channel 1 generates a periodic signal with a frequency equal to 195 Hz. CC2 update rate = TIM4 counter clock / uhCCR2_Val = 12.5 MHz/16025 = 780 Hz ==> So the TIM4 Channel 2 generates a periodic signal with a frequency equal to 390 Hz. CC3 update rate = TIM4 counter clock / uhCCR3_Val = 12.5 MHz/8012 = 1560 Hz ==> So the TIM4 Channel 3 generates a periodic signal with a frequency equal to 780 Hz. CC4 update rate = TIM4 counter clock / uhCCR4_Val = 12.5 MHz/4006 = 3120 Hz ==> So the TIM4 Channel 4 generates a periodic signal with a frequency equal to 1560 Hz. --------------------------------------------------------------------------- */ /* Compute the prescaler value to have TIM4 counter clock equal to 12.5 MHz */ uwPrescalerValue = (uint32_t)((SystemCoreClock / 12500000) - 1); TimHandle.Instance = TIM4; TimHandle.Init.Period = 65535; TimHandle.Init.Prescaler = uwPrescalerValue; TimHandle.Init.ClockDivision = 0; TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP; TimHandle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if(HAL_TIM_OC_Init(&TimHandle) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /*##-2- Configure the Output Compare channels ##############################*/ /* Common configuration for all channels */ sConfig.OCMode = TIM_OCMODE_TOGGLE; sConfig.OCPolarity = TIM_OCPOLARITY_LOW; /* Output Compare Toggle Mode configuration: Channel1 */ sConfig.Pulse = uhCCR1_Val; if(HAL_TIM_OC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_1) != HAL_OK) { /* Configuration Error */ Error_Handler(); } /* Output Compare Toggle Mode configuration: Channel2 */ sConfig.Pulse = uhCCR2_Val; if(HAL_TIM_OC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_2) != HAL_OK) { /* Configuration Error */ Error_Handler(); } /* Output Compare Toggle Mode configuration: Channel3 */ sConfig.Pulse = uhCCR3_Val; if(HAL_TIM_OC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_3) != HAL_OK) { /* Configuration Error */ Error_Handler(); } /* Output Compare Toggle Mode configuration: Channel4 */ sConfig.Pulse = uhCCR4_Val; if(HAL_TIM_OC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_4) != HAL_OK) { /* Configuration Error */ Error_Handler(); } /*##-3- Start signals generation #######################################*/ /* Start channel 1 in Output compare mode */ if(HAL_TIM_OC_Start_IT(&TimHandle, TIM_CHANNEL_1) != HAL_OK) { /* Starting Error */ Error_Handler(); } /* Start channel 2 in Output compare mode */ if(HAL_TIM_OC_Start_IT(&TimHandle, TIM_CHANNEL_2) != HAL_OK) { /* Starting Error */ Error_Handler(); } /* Start channel 3 in Output compare mode */ if(HAL_TIM_OC_Start_IT(&TimHandle, TIM_CHANNEL_3) != HAL_OK) { /* Starting Error */ Error_Handler(); } /* Start channel 4 in Output compare mode */ if(HAL_TIM_OC_Start_IT(&TimHandle, TIM_CHANNEL_4) != HAL_OK) { /* Starting Error */ Error_Handler(); } while (1) {} } /** * @brief Output Compare callback in non blocking mode * @param htim : TIM OC handle * @retval None */ void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim) { /* TIM4_CH1 toggling with frequency = 195 Hz */ if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1) { uhCapture = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1); /* Set the Capture Compare Register value */ __HAL_TIM_SET_COMPARE(&TimHandle, TIM_CHANNEL_1, (uhCapture + uhCCR1_Val)); } /* TIM4_CH2 toggling with frequency = 390 Hz */ if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2) { uhCapture = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2); /* Set the Capture Compare Register value */ __HAL_TIM_SET_COMPARE(&TimHandle, TIM_CHANNEL_2, (uhCapture + uhCCR2_Val)); } /* TIM4_CH3 toggling with frequency = 780 Hz */ if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_3) { uhCapture = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_3); /* Set the Capture Compare Register value */ __HAL_TIM_SET_COMPARE(&TimHandle, TIM_CHANNEL_3, (uhCapture + uhCCR3_Val)); } /* TIM4_CH4 toggling with frequency = 1560 Hz */ if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_4) { uhCapture = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_4); /* Set the Capture Compare Register value */ __HAL_TIM_SET_COMPARE(&TimHandle, TIM_CHANNEL_4, (uhCapture + uhCCR4_Val)); } } /** * @brief This function is executed in case of error occurrence. * @param None * @retval None */ static void Error_Handler(void) { /* Turn LED3 on */ BSP_LED_On(LED3); while (1) { } } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 100000000 * HCLK(Hz) = 100000000 * AHB Prescaler = 1 * APB1 Prescaler = 2 * APB2 Prescaler = 1 * HSE Frequency(Hz) = 8000000 * PLL_M = 8 * PLL_N = 200 * PLL_P = 2 * PLL_Q = 7 * PLL_R = 2 * VDD(V) = 3.3 * Main regulator output voltage = Scale1 mode * Flash Latency(WS) = 3 * @param None * @retval None */ static void SystemClock_Config(void) { RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct; HAL_StatusTypeDef ret = HAL_OK; /* Enable Power Control clock */ __HAL_RCC_PWR_CLK_ENABLE(); /* The voltage scaling allows optimizing the power consumption when the device is clocked below the maximum system frequency, to update the voltage scaling value regarding system frequency refer to product datasheet. */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /* Enable HSE Oscillator and activate PLL with HSE as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 8; RCC_OscInitStruct.PLL.PLLN = 200; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 7; RCC_OscInitStruct.PLL.PLLR = 2; ret = HAL_RCC_OscConfig(&RCC_OscInitStruct); if(ret != HAL_OK) { while(1) { ; } } /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3); if(ret != HAL_OK) { while(1) { ; } } } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */