/** ****************************************************************************** * @file TIM/TIM_OnePulse/Src/main.c * @author MCD Application Team * @brief This sample code shows how to use STM32F4xx TIM HAL API to generate * a one pulse signal ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F4xx_HAL_Examples * @{ */ /** @addtogroup TIM_OnePulse * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Timer handler declaration */ TIM_HandleTypeDef TimHandle; /* Prescaler value declaration*/ uint32_t uwPrescalerValue = 0; /* Timer One Pulse Configuration Structure declaration */ TIM_OnePulse_InitTypeDef sConfig; /* Private function prototypes -----------------------------------------------*/ static void SystemClock_Config(void); static void Error_Handler(void); /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None */ int main(void) { /* STM32F4xx HAL library initialization: - Configure the Flash prefetch, instruction and Data caches - Configure the Systick to generate an interrupt each 1 msec - Set NVIC Group Priority to 4 - Global MSP (MCU Support Package) initialization */ HAL_Init(); /* Configure the system clock to 180 MHz */ SystemClock_Config(); /* Configure LED3 */ BSP_LED_Init(LED3); /* Compute the prescaler value, to have TIM4Freq = 45 MHz */ uwPrescalerValue = (uint32_t) (((SystemCoreClock / 2) / 45000000) - 1); /*##-1- Configure the TIM peripheral #######################################*/ /* Initialize TIMx peripheral as follow: + Prescaler = (SystemCoreClock/2)/45000000 to have TIMCLK = 45 MHz + Period = 0xFFFF + ClockDivision = 0 + Counter direction = Up */ TimHandle.Instance = TIMx; TimHandle.Init.Period = 0xFFFF; TimHandle.Init.Prescaler = uwPrescalerValue; TimHandle.Init.ClockDivision = 0; TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP; TimHandle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if(HAL_TIM_OnePulse_Init(&TimHandle, TIM_OPMODE_SINGLE) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /*##-2- Configure the Channel 1 in One Pulse mode ##########################*/ sConfig.OCMode = TIM_OCMODE_PWM2; sConfig.OCPolarity = TIM_OCPOLARITY_HIGH; sConfig.Pulse = 16383; sConfig.ICPolarity = TIM_ICPOLARITY_RISING; sConfig.ICSelection = TIM_ICSELECTION_DIRECTTI; sConfig.ICFilter = 0; if(HAL_TIM_OnePulse_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_1, TIM_CHANNEL_2) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /*##-3- Start the One Pulse mode ###########################################*/ if(HAL_TIM_OnePulse_Start(&TimHandle, TIM_CHANNEL_2) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /* Infinite loop */ while (1) { } } /** * @brief This function is executed in case of error occurrence. * @param None * @retval None */ static void Error_Handler(void) { /* Turn LED3 on */ BSP_LED_On(LED3); while(1) { } } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 180000000 * HCLK(Hz) = 180000000 * AHB Prescaler = 1 * APB1 Prescaler = 4 * APB2 Prescaler = 2 * HSE Frequency(Hz) = 25000000 * PLL_M = 25 * PLL_N = 360 * PLL_P = 2 * PLL_Q = 7 * VDD(V) = 3.3 * Main regulator output voltage = Scale1 mode * Flash Latency(WS) = 5 * @param None * @retval None */ static void SystemClock_Config(void) { RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct; /* Enable Power Control clock */ __HAL_RCC_PWR_CLK_ENABLE(); /* The voltage scaling allows optimizing the power consumption when the device is clocked below the maximum system frequency, to update the voltage scaling value regarding system frequency refer to product datasheet. */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /* Enable HSE Oscillator and activate PLL with HSE as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 25; RCC_OscInitStruct.PLL.PLLN = 360; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 7; HAL_RCC_OscConfig(&RCC_OscInitStruct); /* Activate the Over-Drive mode */ HAL_PWREx_EnableOverDrive(); /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5); } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t* file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */