392 lines
13 KiB
C
Raw Normal View History

2019-04-30 17:27:23 +01:00
/**
******************************************************************************
* @file TIM/TIM_ParallelSynchro/Src/main.c
* @author MCD Application Team
* @brief This example shows how to command 2 Timers as slaves (TIM3 & TIM4)
* using a Timer as master (TIM2)
******************************************************************************
* @attention
*
2022-03-09 09:22:30 +01:00
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
2019-04-30 17:27:23 +01:00
*
2022-03-09 09:22:30 +01:00
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
2019-04-30 17:27:23 +01:00
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F4xx_HAL_Examples
* @{
*/
/** @addtogroup TIM_ParallelSynchro
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Timer1 handler declaration: Master */
TIM_HandleTypeDef TimMasterHandle;
/* Timer3 handler declaration: Slave1 */
TIM_HandleTypeDef TimSlave1Handle;
/* Timer4 handler declaration: Slave2 */
TIM_HandleTypeDef TimSlave2Handle;
/* Output compare structure */
TIM_OC_InitTypeDef sOCConfig;
/* Master configuration structure */
TIM_MasterConfigTypeDef sMasterConfig;
/* Slave configuration structure */
TIM_SlaveConfigTypeDef sSlaveConfig;
/* Private function prototypes -----------------------------------------------*/
static void SystemClock_Config(void);
static void Error_Handler(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program.
* @param None
* @retval None
*/
int main(void)
{
/* STM32F4xx HAL library initialization:
- Configure the Flash prefetch, instruction and Data caches
- Systick timer is configured by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
- Set NVIC Group Priority to 4
- Low Level Initialization: global MSP (MCU Support Package) initialization
*/
HAL_Init();
/* Configure the system clock to 180 MHz */
SystemClock_Config();
/* Configure LED3 */
BSP_LED_Init(LED3);
/* Timers Configuration */
/* ---------------------------------------------------------------------------
TIM2 and Timers(TIM3 and TIM4) synchronization in parallel mode.
1/TIM2 is configured as Master Timer:
- PWM Mode is used
- The TIM2 Update event is used as Trigger Output
2/TIM3 and TIM4 are slaves for TIM2,
- PWM Mode is used
- The ITR1(TIM2) is used as input trigger for both slaves
- Gated mode is used, so starts and stops of slaves counters
are controlled by the Master trigger output signal(update event).
In this example TIM2 input clock (TIM2CLK) is set to 2 * APB1 clock (PCLK1),
since APB1 prescaler is different from 1.
TIM2CLK = 2 * PCLK1
PCLK1 = HCLK / 4
=> TIM2CLK = HCLK/2 = SystemCoreClock/2
The TIM2 counter clock is equal to SystemCoreClock/2 = 180 MHz/2.
The Master Timer TIM2 is running at:
TIM2 frequency = TIM2 counter clock / (TIM2_Period + 1) = 351.562 KHz
TIM2_Period = (TIM2 counter clock / TIM2 frequency) - 1 = 255
and the duty cycle is equal to: TIM2_CCR1/(TIM2_ARR + 1) = 25%
The TIM3 is running at:
(TIM2 frequency)/ (TIM3 period +1) = 35.156 KHz and
a duty cycle equal to TIM3_CCR1/(TIM3_ARR + 1) = 30%
The TIM4 is running at:
(TIM2 frequency)/ (TIM4 period +1) = 70.312 KHz and
a duty cycle equal to TIM4_CCR1/(TIM4_ARR + 1) = 60%
Note:
SystemCoreClock variable holds HCLK frequency and is defined in SystemClock_Config().
Each time the core clock (HCLK) changes, user had to update SystemCoreClock
variable value. Otherwise, any configuration based on this variable will be incorrect.
This variable is updated in three ways:
1) by calling CMSIS function SystemCoreClockUpdate()
2) by calling HAL API function HAL_RCC_GetSysClockFreq()
3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency
--------------------------------------------------------------------------- */
/* Set Timers instance */
TimMasterHandle.Instance = TIM2;
TimSlave1Handle.Instance = TIM3;
TimSlave2Handle.Instance = TIM4;
/*====================== Master configuration : TIM2 =======================*/
/* Initialize TIM2 peripheral in PWM mode*/
TimMasterHandle.Init.Period = 255;
TimMasterHandle.Init.Prescaler = 0;
TimMasterHandle.Init.ClockDivision = 0;
TimMasterHandle.Init.CounterMode = TIM_COUNTERMODE_UP;
TimMasterHandle.Init.RepetitionCounter = 4;
TimMasterHandle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&TimMasterHandle) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/* Configure the PWM_channel_1 */
sOCConfig.OCMode = TIM_OCMODE_PWM1;
sOCConfig.OCPolarity = TIM_OCPOLARITY_HIGH;
sOCConfig.Pulse = 64;
sOCConfig.OCNPolarity = TIM_OCNPOLARITY_HIGH;
sOCConfig.OCFastMode = TIM_OCFAST_DISABLE;
sOCConfig.OCIdleState = TIM_OCIDLESTATE_RESET;
sOCConfig.OCNIdleState = TIM_OCNIDLESTATE_RESET;
if (HAL_TIM_PWM_ConfigChannel(&TimMasterHandle, &sOCConfig, TIM_CHANNEL_1) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/* Configure TIM2 as master & use the update event as Trigger Output (TRGO) */
sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_ENABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&TimMasterHandle, &sMasterConfig) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/*================== End of Master configuration : TIM2 ====================*/
/*====================== Slave1 configuration : TIM3 =======================*/
/* Initialize TIM3 peripheral in PWM mode */
TimSlave1Handle.Init.Period = 9;
TimSlave1Handle.Init.Prescaler = 0;
TimSlave1Handle.Init.ClockDivision = 0;
TimSlave1Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
TimSlave1Handle.Init.RepetitionCounter = 0;
TimSlave1Handle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&TimSlave1Handle) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/* Configure the PWM_channel_1 */
sOCConfig.OCMode = TIM_OCMODE_PWM1;
sOCConfig.OCPolarity = TIM_OCPOLARITY_HIGH;
sOCConfig.Pulse = 3;
if (HAL_TIM_PWM_ConfigChannel(&TimSlave1Handle, &sOCConfig, TIM_CHANNEL_1) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/* Configure TIM3 in Gated slave mode &
use the Internal Trigger 0 (ITR1) as trigger source */
sSlaveConfig.SlaveMode = TIM_SLAVEMODE_GATED;
sSlaveConfig.InputTrigger = TIM_TS_ITR1;
sSlaveConfig.TriggerPolarity = TIM_TRIGGERPOLARITY_NONINVERTED;
sSlaveConfig.TriggerPrescaler = TIM_TRIGGERPRESCALER_DIV1;
sSlaveConfig.TriggerFilter = 0;
if (HAL_TIM_SlaveConfigSynchronization(&TimSlave1Handle, &sSlaveConfig) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/*================== End of Slave1 configuration : TIM3 ====================*/
/*====================== Slave2 configuration : TIM4 =======================*/
/* Initialize TIM4 peripheral in PWM mode*/
TimSlave2Handle.Init.Period = 4;
TimSlave2Handle.Init.Prescaler = 0;
TimSlave2Handle.Init.ClockDivision = 0;
TimSlave2Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
TimSlave2Handle.Init.RepetitionCounter = 0;
TimSlave2Handle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&TimSlave2Handle) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/* Configure the PWM_channel_1 */
sOCConfig.OCMode = TIM_OCMODE_PWM1;
sOCConfig.OCPolarity = TIM_OCPOLARITY_HIGH;
sOCConfig.Pulse = 3;
if (HAL_TIM_PWM_ConfigChannel(&TimSlave2Handle, &sOCConfig, TIM_CHANNEL_1) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/* Configure TIM3 in Gated slave mode &
use the Internal Trigger 0 (ITR1) as trigger source */
sSlaveConfig.SlaveMode = TIM_SLAVEMODE_GATED;
sSlaveConfig.InputTrigger = TIM_TS_ITR1;
if (HAL_TIM_SlaveConfigSynchronization(&TimSlave2Handle, &sSlaveConfig) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/*================== End of Slave2 configuration : TIM4 ====================*/
/* Start Master PWM generation */
if (HAL_TIM_PWM_Start(&TimMasterHandle, TIM_CHANNEL_1) != HAL_OK)
{
/* PWM generation Error */
Error_Handler();
}
/* Start Slave1 PWM generation */
if (HAL_TIM_PWM_Start(&TimSlave1Handle, TIM_CHANNEL_1) != HAL_OK)
{
/* PWM generation Error */
Error_Handler();
}
/* Start Slave2 PWM generation */
if (HAL_TIM_PWM_Start(&TimSlave2Handle, TIM_CHANNEL_1) != HAL_OK)
{
/* PWM generation Error */
Error_Handler();
}
while (1)
{
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* Turn LED3 on */
BSP_LED_On(LED3);
while (1)
{
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 180000000
* HCLK(Hz) = 180000000
* AHB Prescaler = 1
* APB1 Prescaler = 4
* APB2 Prescaler = 2
* HSE Frequency(Hz) = 25000000
* PLL_M = 25
* PLL_N = 360
* PLL_P = 2
* PLL_Q = 7
* PLL_R = 6
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 5
* @param None
* @retval None
*/
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
HAL_StatusTypeDef ret = HAL_OK;
/* Enable Power Control clock */
__HAL_RCC_PWR_CLK_ENABLE();
/* The voltage scaling allows optimizing the power consumption when the device is
clocked below the maximum system frequency, to update the voltage scaling value
regarding system frequency refer to product datasheet. */
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 25;
RCC_OscInitStruct.PLL.PLLN = 360;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
RCC_OscInitStruct.PLL.PLLR = 6;
ret = HAL_RCC_OscConfig(&RCC_OscInitStruct);
if(ret != HAL_OK)
{
while(1) { ; }
}
/* Activate the OverDrive to reach the 180 MHz Frequency */
ret = HAL_PWREx_EnableOverDrive();
if(ret != HAL_OK)
{
while(1) { ; }
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5);
if(ret != HAL_OK)
{
while(1) { ; }
}
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/