2019-04-30 17:27:23 +01:00
/**
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* @ file I2C / I2C_EEPROM / Src / main . c
* @ author MCD Application Team
* @ brief This sample code shows how to use STM32F4xx I2C HAL API to transmit
* and receive a data buffer with a communication process based on
* DMA transfer .
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* @ attention
*
2022-03-09 09:22:30 +01:00
* Copyright ( c ) 2017 STMicroelectronics .
* All rights reserved .
2019-04-30 17:27:23 +01:00
*
2022-03-09 09:22:30 +01:00
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component .
* If no LICENSE file comes with this software , it is provided AS - IS .
2019-04-30 17:27:23 +01:00
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
*/
/* Includes ------------------------------------------------------------------*/
# include "main.h"
/** @addtogroup STM32F4xx_HAL_Examples
* @ {
*/
/** @addtogroup I2C_EEPROM
* @ {
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
# define EEPROM_ADDRESS 0xA6
# define EEPROM_PAGESIZE 4 /* RF EEPROM ANT7-M24LR-A used */
/* Maximum Timeout values for flags waiting loops. These timeouts are not based
on accurate values , they just guarantee that the application will not remain
stuck if the I2C communication is corrupted .
You may modify these timeout values depending on CPU frequency and application
conditions ( interrupts routines . . . ) . */
# define I2Cx_TIMEOUT_MAX 300
/* Maximum number of trials for HAL_I2C_IsDeviceReady() function */
# define EEPROM_MAX_TRIALS 300
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* I2C handler declaration */
FMPI2C_HandleTypeDef I2cHandle ;
/* Buffer used for transmission */
uint8_t aTxBuffer [ ] = " ****I2C EEPROM communication based on DMA**** ****I2C EEPROM communication based on DMA**** ****I2C EEPROM communication based on DMA**** " ;
/* Buffer used for reception */
uint8_t aRxBuffer [ RXBUFFERSIZE ] ;
/* Useful variables during communication */
uint16_t Memory_Address ;
int Remaining_Bytes ;
/* Private function prototypes -----------------------------------------------*/
static void SystemClock_Config ( void ) ;
static uint16_t Buffercmp ( uint8_t * pBuffer1 , uint8_t * pBuffer2 , uint16_t BufferLength ) ;
static void Error_Handler ( void ) ;
/* Private functions ---------------------------------------------------------*/
/**
* @ brief Main program
* @ param None
* @ retval None
*/
int main ( void )
{
/* STM32F4xx HAL library initialization:
- Configure the Flash prefetch
- Systick timer is configured by default as source of time base , but user
can eventually implement his proper time base source ( a general purpose
timer for example or other time source ) , keeping in mind that Time base
duration should be kept 1 ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis .
- Set NVIC Group Priority to 4
- Low Level Initialization
*/
HAL_Init ( ) ;
/* Configure the system clock to 180 MHz */
SystemClock_Config ( ) ;
/* Configure LED1 and LED3 */
BSP_LED_Init ( LED1 ) ;
BSP_LED_Init ( LED3 ) ;
/*##-1- Configure the I2C peripheral #######################################*/
I2cHandle . Instance = I2Cx ;
I2cHandle . Init . Timing = EVAL_I2Cx_TIMING ;
I2cHandle . Init . OwnAddress1 = 0x00 ;
I2cHandle . Init . AddressingMode = FMPI2C_ADDRESSINGMODE_7BIT ;
I2cHandle . Init . DualAddressMode = FMPI2C_DUALADDRESS_DISABLE ;
I2cHandle . Init . OwnAddress2 = 0x00 ;
I2cHandle . Init . GeneralCallMode = FMPI2C_GENERALCALL_DISABLE ;
I2cHandle . Init . NoStretchMode = FMPI2C_NOSTRETCH_DISABLE ;
if ( HAL_FMPI2C_Init ( & I2cHandle ) ! = HAL_OK )
{
/* Initialization Error */
Error_Handler ( ) ;
}
/* The board sends the message to EEPROM then reads it back */
/*##-2- Start writing process ##############################################*/
/* Initialize Remaining Bytes Value to TX Buffer Size */
Remaining_Bytes = TXBUFFERSIZE ;
/* Initialize Memory address to 0 since EEPROM write will start from address 0 */
Memory_Address = 0 ;
/* Since page size is 4 bytes, the write procedure will be done in a loop */
while ( Remaining_Bytes > 0 )
{
/* Write EEPROM_PAGESIZE */
if ( HAL_FMPI2C_Mem_Write_DMA ( & I2cHandle , ( uint16_t ) EEPROM_ADDRESS , Memory_Address , FMPI2C_MEMADD_SIZE_16BIT , ( uint8_t * ) ( aTxBuffer + Memory_Address ) , EEPROM_PAGESIZE ) ! = HAL_OK )
{
/* Writing process Error */
Error_Handler ( ) ;
}
/* Wait for the end of the transfer */
/* Before starting a new communication transfer, you need to check the current
state of the peripheral ; if it <EFBFBD> s busy you need to wait for the end of current
transfer before starting a new one .
For simplicity reasons , this example is just waiting till the end of the
transfer , but application may perform other tasks while transfer operation
is ongoing . */
while ( HAL_FMPI2C_GetState ( & I2cHandle ) ! = HAL_FMPI2C_STATE_READY )
{
}
/* Check if the EEPROM is ready for a new operation */
while ( HAL_FMPI2C_IsDeviceReady ( & I2cHandle , EEPROM_ADDRESS , EEPROM_MAX_TRIALS , I2Cx_TIMEOUT_MAX ) = = HAL_TIMEOUT ) ;
/* Wait for the end of the transfer */
while ( HAL_FMPI2C_GetState ( & I2cHandle ) ! = HAL_FMPI2C_STATE_READY )
{
}
/* Update Remaining bytes and Memory Address values */
Remaining_Bytes - = EEPROM_PAGESIZE ;
Memory_Address + = EEPROM_PAGESIZE ;
}
/*##-3- Start reading process ##############################################*/
if ( HAL_FMPI2C_Mem_Read_DMA ( & I2cHandle , ( uint16_t ) EEPROM_ADDRESS , 0 , FMPI2C_MEMADD_SIZE_16BIT , ( uint8_t * ) aRxBuffer , RXBUFFERSIZE ) ! = HAL_OK )
{
/* Reading process Error */
Error_Handler ( ) ;
}
/* Wait for the end of the transfer */
while ( HAL_FMPI2C_GetState ( & I2cHandle ) ! = HAL_FMPI2C_STATE_READY )
{
}
/*##-4- Compare the sent and received buffers ##############################*/
if ( Buffercmp ( ( uint8_t * ) aTxBuffer , ( uint8_t * ) aRxBuffer , RXBUFFERSIZE ) )
{
/* Processing Error */
Error_Handler ( ) ;
}
/* Infinite loop */
while ( 1 )
{
BSP_LED_Toggle ( LED1 ) ;
HAL_Delay ( 250 ) ;
}
}
/**
* @ brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL ( HSE )
* SYSCLK ( Hz ) = 180000000
* HCLK ( Hz ) = 180000000
* AHB Prescaler = 1
* APB1 Prescaler = 4
* APB2 Prescaler = 2
* HSE Frequency ( Hz ) = 8000000
* PLL_M = 8
* PLL_N = 360
* PLL_P = 2
* PLL_Q = 7
* VDD ( V ) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency ( WS ) = 5
* @ param None
* @ retval None
*/
static void SystemClock_Config ( void )
{
RCC_ClkInitTypeDef RCC_ClkInitStruct ;
RCC_OscInitTypeDef RCC_OscInitStruct ;
HAL_StatusTypeDef ret = HAL_OK ;
/* Enable Power Control clock */
__HAL_RCC_PWR_CLK_ENABLE ( ) ;
/* The voltage scaling allows optimizing the power consumption when the device is
clocked below the maximum system frequency , to update the voltage scaling value
regarding system frequency refer to product datasheet . */
__HAL_PWR_VOLTAGESCALING_CONFIG ( PWR_REGULATOR_VOLTAGE_SCALE1 ) ;
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct . OscillatorType = RCC_OSCILLATORTYPE_HSE ;
RCC_OscInitStruct . HSEState = RCC_HSE_ON ;
RCC_OscInitStruct . PLL . PLLState = RCC_PLL_ON ;
RCC_OscInitStruct . PLL . PLLSource = RCC_PLLSOURCE_HSE ;
RCC_OscInitStruct . PLL . PLLM = 8 ;
RCC_OscInitStruct . PLL . PLLN = 360 ;
RCC_OscInitStruct . PLL . PLLP = RCC_PLLP_DIV2 ;
RCC_OscInitStruct . PLL . PLLQ = 7 ;
RCC_OscInitStruct . PLL . PLLR = 2 ;
ret = HAL_RCC_OscConfig ( & RCC_OscInitStruct ) ;
if ( ret ! = HAL_OK )
{
while ( 1 ) { ; }
}
/* Activate the OverDrive to reach the 180 MHz Frequency */
ret = HAL_PWREx_EnableOverDrive ( ) ;
if ( ret ! = HAL_OK )
{
while ( 1 ) { ; }
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */
RCC_ClkInitStruct . ClockType = ( RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2 ) ;
RCC_ClkInitStruct . SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK ;
RCC_ClkInitStruct . AHBCLKDivider = RCC_SYSCLK_DIV1 ;
RCC_ClkInitStruct . APB1CLKDivider = RCC_HCLK_DIV4 ;
RCC_ClkInitStruct . APB2CLKDivider = RCC_HCLK_DIV2 ;
ret = HAL_RCC_ClockConfig ( & RCC_ClkInitStruct , FLASH_LATENCY_5 ) ;
if ( ret ! = HAL_OK )
{
while ( 1 ) { ; }
}
}
/**
* @ brief Tx Transfer completed callback .
* @ param I2cHandle : I2C handle
* @ note This example shows a simple way to report end of DMA Tx transfer , and
* you can add your own implementation .
* @ retval None
*/
void HAL_FMPI2C_MemTxCpltCallback ( FMPI2C_HandleTypeDef * I2cHandle )
{
/* Turn LED1 on: Transfer in transmission process is correct */
BSP_LED_On ( LED1 ) ;
}
/**
* @ brief Rx Transfer completed callback .
* @ param I2cHandle : I2C handle
* @ note This example shows a simple way to report end of DMA Rx transfer , and
* you can add your own implementation .
* @ retval None
*/
void HAL_FMPI2C_MemRxCpltCallback ( FMPI2C_HandleTypeDef * I2cHandle )
{
/* Turn LED1 on: Transfer in reception process is correct */
BSP_LED_Off ( LED1 ) ;
}
/**
* @ brief I2C error callbacks .
* @ param I2cHandle : I2C handle
* @ note This example shows a simple way to report transfer error , and you can
* add your own implementation .
* @ retval None
*/
void HAL_FMPI2C_ErrorCallback ( FMPI2C_HandleTypeDef * I2cHandle )
{
/* Turn LED3 on: Transfer error in reception/transmission process */
BSP_LED_On ( LED3 ) ;
}
/**
* @ brief This function is executed in case of error occurrence .
* @ param None
* @ retval None
*/
static void Error_Handler ( void )
{
/* Turn LED3 on */
BSP_LED_On ( LED3 ) ;
while ( 1 )
{
}
}
/**
* @ brief Compares two buffers .
* @ param pBuffer1 , pBuffer2 : buffers to be compared .
* @ param BufferLength : buffer ' s length
* @ retval 0 : pBuffer1 identical to pBuffer2
* > 0 : pBuffer1 differs from pBuffer2
*/
static uint16_t Buffercmp ( uint8_t * pBuffer1 , uint8_t * pBuffer2 , uint16_t BufferLength )
{
while ( BufferLength - - )
{
if ( ( * pBuffer1 ) ! = * pBuffer2 )
{
return BufferLength ;
}
pBuffer1 + + ;
pBuffer2 + + ;
}
return 0 ;
}
# ifdef USE_FULL_ASSERT
/**
* @ brief Reports the name of the source file and the source line number
* where the assert_param error has occurred .
* @ param file : pointer to the source file name
* @ param line : assert_param error line source number
* @ retval None
*/
void assert_failed ( uint8_t * file , uint32_t line )
{
/* User can add his own implementation to report the file name and line number,
ex : printf ( " Wrong parameters value: file %s on line %d \r \n " , file , line ) */
/* Infinite loop */
while ( 1 )
{
}
}
# endif
/**
* @ }
*/
/**
* @ }
*/