2019-07-15 15:37:15 +01:00

307 lines
9.9 KiB
C

/**
******************************************************************************
* @file TIM/TIM_PWMInput/Src/main.c
* @author MCD Application Team
* @brief This example shows how to use the TIM peripheral to measure the
* frequency and duty cycle of an external signal.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F3xx_HAL_Examples
* @{
*/
/** @addtogroup TIM_PWMInput
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Timer handler declaration */
TIM_HandleTypeDef TimHandle;
/* Timer Input Capture Configuration Structure declaration */
TIM_IC_InitTypeDef sConfig;
/* Slave configuration structure */
TIM_SlaveConfigTypeDef sSlaveConfig;
/* Captured Value */
__IO uint32_t uwIC2Value = 0;
/* Duty Cycle Value */
__IO uint32_t uwDutyCycle = 0;
/* Frequency Value */
__IO uint32_t uwFrequency = 0;
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void Error_Handler(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program.
* @param None
* @retval None
*/
int main(void)
{
/* STM32F3xx HAL library initialization:
- Configure the Flash prefetch
- Configure the Systick to generate an interrupt each 1 msec
- Set NVIC Group Priority to 4
- Low Level Initialization
*/
HAL_Init();
/* Configure the system clock to 64 MHz */
SystemClock_Config();
/* Configure LED2 */
BSP_LED_Init(LED2);
/*##-1- Configure the TIM peripheral #######################################*/
/* ---------------------------------------------------------------------------
TIM3 configuration: PWM Input mode
In this example TIM3 input clock (TIM3CLK) is set to APB1 clock (PCLK1),
since APB1 prescaler is 1.
TIM3CLK = PCLK1
PCLK1 = HCLK
=> TIM3CLK = HCLK = SystemCoreClock
External Signal Frequency = TIM3 counter clock / TIM3_CCR2 in Hz.
External Signal DutyCycle = (TIM3_CCR1*100)/(TIM3_CCR2) in %.
--------------------------------------------------------------------------- */
/* Set TIMx instance */
TimHandle.Instance = TIMx;
/* Initialize TIMx peripheral as follows:
+ Period = 0xFFFF
+ Prescaler = 0
+ ClockDivision = 0
+ Counter direction = Up
*/
TimHandle.Init.Period = 0xFFFF;
TimHandle.Init.Prescaler = 0;
TimHandle.Init.ClockDivision = 0;
TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP;
TimHandle.Init.RepetitionCounter = 0;
TimHandle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_IC_Init(&TimHandle) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/*##-2- Configure the Input Capture channels ###############################*/
/* Common configuration */
sConfig.ICPrescaler = TIM_ICPSC_DIV1;
sConfig.ICFilter = 0;
/* Configure the Input Capture of channel 1 */
sConfig.ICPolarity = TIM_ICPOLARITY_FALLING;
sConfig.ICSelection = TIM_ICSELECTION_INDIRECTTI;
if (HAL_TIM_IC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_1) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/* Configure the Input Capture of channel 2 */
sConfig.ICPolarity = TIM_ICPOLARITY_RISING;
sConfig.ICSelection = TIM_ICSELECTION_DIRECTTI;
if (HAL_TIM_IC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_2) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/*##-3- Configure the slave mode ###########################################*/
/* Select the slave Mode: Reset Mode */
sSlaveConfig.SlaveMode = TIM_SLAVEMODE_RESET;
sSlaveConfig.InputTrigger = TIM_TS_TI2FP2;
sSlaveConfig.TriggerPolarity = TIM_TRIGGERPOLARITY_NONINVERTED;
sSlaveConfig.TriggerPrescaler = TIM_TRIGGERPRESCALER_DIV1;
sSlaveConfig.TriggerFilter = 0;
if (HAL_TIM_SlaveConfigSynchronization(&TimHandle, &sSlaveConfig) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/*##-4- Start the Input Capture in interrupt mode ##########################*/
if (HAL_TIM_IC_Start_IT(&TimHandle, TIM_CHANNEL_2) != HAL_OK)
{
/* Starting Error */
Error_Handler();
}
/*##-5- Start the Input Capture in interrupt mode ##########################*/
if (HAL_TIM_IC_Start_IT(&TimHandle, TIM_CHANNEL_1) != HAL_OK)
{
/* Starting Error */
Error_Handler();
}
while (1)
{
}
}
/**
* @brief Input Capture callback in non blocking mode
* @param htim : TIM IC handle
* @retval None
*/
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
{
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2)
{
/* Get the Input Capture value */
uwIC2Value = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
if (uwIC2Value != 0)
{
/* Duty cycle computation */
uwDutyCycle = ((HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1)) * 100) / uwIC2Value;
/* uwFrequency computation
TIM3 counter clock = (RCC_Clocks.HCLK_Frequency) */
uwFrequency = (HAL_RCC_GetHCLKFreq()) / uwIC2Value;
}
else
{
uwDutyCycle = 0;
uwFrequency = 0;
}
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* Turn LED2 on */
BSP_LED_On(LED2);
while (1)
{
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSI)
* SYSCLK(Hz) = 64000000
* HCLK(Hz) = 64000000
* AHB Prescaler = 1
* APB1 Prescaler = 2
* APB2 Prescaler = 1
* HSI Frequency(Hz) = 8000000
* PREDIV = RCC_PREDIV_DIV2 (2)
* PLLMUL = RCC_PLL_MUL16 (16)
* Flash Latency(WS) = 2
* @param None
* @retval None
*/
void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
/* HSI Oscillator already ON after system reset, activate PLL with HSI as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_NONE;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PREDIV = RCC_PREDIV_DIV2;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct)!= HAL_OK)
{
/* Initialization Error */
while(1);
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2)!= HAL_OK)
{
/* Initialization Error */
while(1);
}
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(char *file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/