2019-07-15 15:37:15 +01:00

350 lines
11 KiB
C

/**
******************************************************************************
* @file SPI/SPI_HalfDuplex_ComPolling/Src/main.c
* @author MCD Application Team
* @brief This sample code shows how to use STM32F3xx SPI HAL API to transmit
* and receive a data buffer with a communication process based on
* Polling transfer.
* The communication is done using 2 Boards.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F3xx_HAL_Examples
* @{
*/
/** @addtogroup SPI_HalfDuplex_ComPolling
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* HalfDuplex communication direction */
#define RX 0
#define TX 1
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* SPI handler declaration */
SPI_HandleTypeDef SpiHandle;
/* Buffer used for transmission */
uint8_t aTxBuffer[] = "**** SPI - Two Boards Half Duplex communication based on Polling **** SPI Message ******** ";
/* Buffer used for reception */
uint8_t aRxBuffer[BUFFERSIZE];
/* Transmission status */
HAL_StatusTypeDef Errorcode = HAL_OK;
/* Private function prototypes -----------------------------------------------*/
static void SystemClock_Config(void);
static void Error_Handler(void);
static void Timeout_Error_Handler(void);
static uint16_t Buffercmp(uint8_t *pBuffer1, uint8_t *pBuffer2, uint16_t BufferLength);
static void Check_Error (HAL_StatusTypeDef Errorcode, uint8_t Direction);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program.
* @param None
* @retval None
*/
int main(void)
{
/* STM32F3xx HAL library initialization:
- Configure the Flash prefetch
- Configure the Systick to generate an interrupt each 1 msec
- Set NVIC Group Priority to 4
- Low Level Initialization
*/
HAL_Init();
/* Configure the system clock to 64 MHz */
SystemClock_Config();
/* Configure LED1, LED2 and LED3 */
BSP_LED_Init(LED1);
BSP_LED_Init(LED2);
BSP_LED_Init(LED3);
/*##-1- Configure the SPI peripheral #######################################*/
/* Set the SPI parameters */
SpiHandle.Instance = SPIx;
SpiHandle.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
SpiHandle.Init.Direction = SPI_DIRECTION_1LINE;
SpiHandle.Init.CLKPhase = SPI_PHASE_1EDGE;
SpiHandle.Init.CLKPolarity = SPI_POLARITY_LOW;
SpiHandle.Init.DataSize = SPI_DATASIZE_8BIT;
SpiHandle.Init.FirstBit = SPI_FIRSTBIT_MSB;
SpiHandle.Init.TIMode = SPI_TIMODE_DISABLE;
SpiHandle.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
SpiHandle.Init.CRCPolynomial = 7;
SpiHandle.Init.CRCLength = SPI_CRC_LENGTH_8BIT;
SpiHandle.Init.NSS = SPI_NSS_SOFT;
SpiHandle.Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
#ifdef MASTER_BOARD
SpiHandle.Init.Mode = SPI_MODE_MASTER;
#else
SpiHandle.Init.Mode = SPI_MODE_SLAVE;
#endif /* MASTER_BOARD */
if(HAL_SPI_Init(&SpiHandle) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
#ifdef MASTER_BOARD
/* Configure User push-button */
BSP_PB_Init(BUTTON_USER, BUTTON_MODE_GPIO);
/* Wait for User push-button press before starting the Communication */
while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_SET)
{
BSP_LED_Toggle(LED1);
HAL_Delay(100);
}
BSP_LED_Off(LED1);
/*##-2- MASTER : Start the Half Duplex Communication : TX ########################*/
/* Timeout is set to 5 seconds */
Errorcode = HAL_SPI_Transmit(&SpiHandle, (uint8_t*)aTxBuffer, BUFFERSIZE, 5000);
Check_Error(Errorcode, TX);
HAL_Delay(2000);
/*##-3- MASTER : Start the Half Duplex Communication : RX ########################*/
/* Timeout is set to 5 seconds */
/* Disable SPI before changing direction */
__HAL_SPI_DISABLE(&SpiHandle);
Errorcode = HAL_SPI_Receive(&SpiHandle, (uint8_t*)aRxBuffer, BUFFERSIZE, 5000);
Check_Error(Errorcode, RX);
#else /* SLAVE_BOARD */
/*##-2- SLAVE : Start the Half Duplex Communication : RX ########################*/
/* Timeout is set to 60 seconds to wait Push-Button press */
Errorcode = HAL_SPI_Receive(&SpiHandle, (uint8_t*)aRxBuffer, BUFFERSIZE, 60000);
Check_Error(Errorcode, RX);
/*##-3- SLAVE : Start the Half Duplex Communication : TX ########################*/
/* Timeout is set to 5 seconds */
/* Disable SPI before changing direction */
/* Transmission of the received buffer */
__HAL_SPI_DISABLE(&SpiHandle);
Errorcode = HAL_SPI_Transmit(&SpiHandle, (uint8_t*)aRxBuffer, BUFFERSIZE, 5000);
Check_Error(Errorcode, TX);
#endif
/* Infinite loop */
while (1)
{
}
}
/**
* @brief This function is executed to test the transmission status
* @param None
* @retval None
*/
static void Check_Error (HAL_StatusTypeDef Errorcode, uint8_t Direction)
{
switch(Errorcode)
{
case HAL_OK:
if (Direction == TX)
{
/* Turn LED1 on: Transmission complete */
BSP_LED_On(LED1);
}
else
{
if (Buffercmp((uint8_t *)aTxBuffer, (uint8_t *)aRxBuffer, BUFFERSIZE))
{
/* Turn LED3 on : Transfer error in transmission process */
Error_Handler();
}
else
{
/* Turn LED2 on: Reception complete */
BSP_LED_On(LED2);
}
}
break;
case HAL_TIMEOUT:
/* Toggle LED3 : A timeout occur */
Timeout_Error_Handler();
break;
case HAL_ERROR:
/* Toggle LED3 on : An error occur */
Error_Handler();
break;
default :
break;
}
}
/**
* @brief This function is executed in case of timeout.
* @param None
* @retval None
*/
static void Timeout_Error_Handler(void)
{
/* Toggle LED3 */
while(1)
{
BSP_LED_Toggle(LED3);
HAL_Delay(500);
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* Turn LED3 on */
BSP_LED_On(LED3);
while(1);
}
/**
* @brief Compares two buffers.
* @param pBuffer1, pBuffer2: buffers to be compared.
* @param BufferLength: buffer's length
* @retval 0 : pBuffer1 identical to pBuffer2
* >0 : pBuffer1 differs from pBuffer2
*/
static uint16_t Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength)
{
while (BufferLength--)
{
if((*pBuffer1) != *pBuffer2)
{
return BufferLength;
}
pBuffer1++;
pBuffer2++;
}
return 0;
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSI)
* SYSCLK(Hz) = 64000000
* HCLK(Hz) = 64000000
* AHB Prescaler = 1
* APB1 Prescaler = 2
* APB2 Prescaler = 1
* HSI Frequency(Hz) = 8000000
* PREDIV = RCC_PREDIV_DIV2 (2)
* PLLMUL = RCC_PLL_MUL16 (16)
* Flash Latency(WS) = 2
* @param None
* @retval None
*/
void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
/* HSI Oscillator already ON after system reset, activate PLL with HSI as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_NONE;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PREDIV = RCC_PREDIV_DIV2;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct)!= HAL_OK)
{
/* Initialization Error */
while(1);
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2)!= HAL_OK)
{
/* Initialization Error */
while(1);
}
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(char* file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/