2019-07-15 15:37:15 +01:00

558 lines
20 KiB
C
Raw Blame History

/**
******************************************************************************
* @file I2C/I2C_TwoBoards_AdvComIT/Src/main.c
* @author MCD Application Team
* @brief This sample code shows how to use STM32F3xx I2C HAL API to transmit
* and receive a data buffer with a communication process based on
* IT transfer.
* The communication is done using 2 Boards.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F3xx_HAL_Examples
* @{
*/
/** @addtogroup I2C_TwoBoards_AdvComIT
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Uncomment this line to use the board as master, if not it is used as slave */
//#define MASTER_BOARD
#define I2C_ADDRESS 0x3E
#define MASTER_REQ_READ 0x12
#define MASTER_REQ_WRITE 0x34
/* I2C TIMING Register define when I2C clock source is SYSCLK */
/* I2C TIMING is calculated in case of the I2C Clock source is the SYSCLK = 64 MHz */
/* This example use TIMING to 0x00400B27 to reach 1 MHz speed (Rise time = 26ns, Fall time = 2ns) */
#define I2C_TIMING 0x00400B27
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* I2C handler declaration */
I2C_HandleTypeDef I2cHandle;
/* Buffer used for transmission */
uint8_t aTxBuffer[] = " ****I2C_TwoBoards communication based on IT**** ****I2C_TwoBoards communication based on IT**** ****I2C_TwoBoards communication based on IT**** ";
/* Buffer used for reception */
uint8_t aRxBuffer[RXBUFFERSIZE];
uint16_t hTxNumData = 0, hRxNumData = 0;
uint8_t bTransferRequest = 0;
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static uint16_t Buffercmp(uint8_t *pBuffer1, uint8_t *pBuffer2, uint16_t BufferLength);
static void Flush_Buffer(uint8_t* pBuffer, uint16_t BufferLength);
static void Error_Handler(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/* STM32F3xx HAL library initialization:
- Configure the Flash prefetch
- Systick timer is configured by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
- Set NVIC Group Priority to 4
- Low Level Initialization
*/
HAL_Init();
/* Configure the system clock to 64 MHz */
SystemClock_Config();
/* Configure LED2 */
BSP_LED_Init(LED2);
/*##-1- Configure the I2C peripheral ######################################*/
I2cHandle.Instance = I2Cx;
I2cHandle.Init.Timing = I2C_TIMING;
I2cHandle.Init.OwnAddress1 = I2C_ADDRESS;
I2cHandle.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
I2cHandle.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
I2cHandle.Init.OwnAddress2 = 0xFF;
I2cHandle.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
I2cHandle.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if(HAL_I2C_Init(&I2cHandle) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/* Enable the Analog I2C Filter */
HAL_I2CEx_ConfigAnalogFilter(&I2cHandle,I2C_ANALOGFILTER_ENABLE);
#ifdef MASTER_BOARD
/* Configure User push-button */
BSP_PB_Init(BUTTON_USER,BUTTON_MODE_GPIO);
/* Wait for User push-button press before starting the Communication */
while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_SET)
{
}
/* Wait for User push-button release before starting the Communication */
while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_RESET)
{
}
while(1)
{
/* Initialize number of data variables */
hTxNumData = TXBUFFERSIZE;
hRxNumData = RXBUFFERSIZE;
/* Update bTransferRequest to send buffer write request for Slave */
bTransferRequest = MASTER_REQ_WRITE;
/*##-2- Master sends write request for slave #############################*/
do
{
if(HAL_I2C_Master_Transmit_IT(&I2cHandle, (uint16_t)I2C_ADDRESS, (uint8_t*)&bTransferRequest, 1)!= HAL_OK)
{
/* Error_Handler() function is called when error occurs. */
Error_Handler();
}
/* Before starting a new communication transfer, you need to check the current
state of the peripheral; if it<69>s busy you need to wait for the end of current
transfer before starting a new one.
For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
{
}
/* When Acknowledge failure occurs (Slave don't acknowledge it's address)
Master restarts communication */
}
while(HAL_I2C_GetError(&I2cHandle) == HAL_I2C_ERROR_AF);
/*##-3- Master sends number of data to be written ########################*/
do
{
if(HAL_I2C_Master_Transmit_IT(&I2cHandle, (uint16_t)I2C_ADDRESS, (uint8_t*)&hTxNumData, 2)!= HAL_OK)
{
/* Error_Handler() function is called when error occurs. */
Error_Handler();
}
/* Before starting a new communication transfer, you need to check the current
state of the peripheral; if it<69>s busy you need to wait for the end of current
transfer before starting a new one.
For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
{
}
/* When Acknowledge failure occurs (Slave don't acknowledge it's address)
Master restarts communication */
}
while(HAL_I2C_GetError(&I2cHandle) == HAL_I2C_ERROR_AF);
/*##-4- Master sends aTxBuffer to slave ##################################*/
do
{
if(HAL_I2C_Master_Transmit_IT(&I2cHandle, (uint16_t)I2C_ADDRESS, (uint8_t*)aTxBuffer, TXBUFFERSIZE)!= HAL_OK)
{
/* Error_Handler() function is called when error occurs. */
Error_Handler();
}
/* Before starting a new communication transfer, you need to check the current
state of the peripheral; if it<69>s busy you need to wait for the end of current
transfer before starting a new one.
For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
{
}
/* When Acknowledge failure occurs (Slave don't acknowledge it's address)
Master restarts communication */
}
while(HAL_I2C_GetError(&I2cHandle) == HAL_I2C_ERROR_AF);
/* Update bTransferRequest to send buffer read request for Slave */
bTransferRequest = MASTER_REQ_READ;
/*##-5- Master sends read request for slave ##############################*/
do
{
if(HAL_I2C_Master_Transmit_IT(&I2cHandle, (uint16_t)I2C_ADDRESS, (uint8_t*)&bTransferRequest, 1)!= HAL_OK)
{
/* Error_Handler() function is called when error occurs. */
Error_Handler();
}
/* Before starting a new communication transfer, you need to check the current
state of the peripheral; if it<69>s busy you need to wait for the end of current
transfer before starting a new one.
For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
{
}
/* When Acknowledge failure occurs (Slave don't acknowledge it's address)
Master restarts communication */
}
while(HAL_I2C_GetError(&I2cHandle) == HAL_I2C_ERROR_AF);
/*##-6- Master sends number of data to be read ###########################*/
do
{
if(HAL_I2C_Master_Transmit_IT(&I2cHandle, (uint16_t)I2C_ADDRESS, (uint8_t*)&hRxNumData, 2)!= HAL_OK)
{
/* Error_Handler() function is called when error occurs. */
Error_Handler();
}
/* Before starting a new communication transfer, you need to check the current
state of the peripheral; if it<69>s busy you need to wait for the end of current
transfer before starting a new one.
For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
{
}
/* When Acknowledge failure occurs (Slave don't acknowledge it's address)
Master restarts communication */
}
while(HAL_I2C_GetError(&I2cHandle) == HAL_I2C_ERROR_AF);
/*##-7- Master receives aRxBuffer from slave #############################*/
do
{
if(HAL_I2C_Master_Receive_IT(&I2cHandle, (uint16_t)I2C_ADDRESS, (uint8_t*)aRxBuffer, RXBUFFERSIZE)!= HAL_OK)
{
/* Error_Handler() function is called when error occurs. */
Error_Handler();
}
/* Before starting a new communication transfer, you need to check the current
state of the peripheral; if it<69>s busy you need to wait for the end of current
transfer before starting a new one.
For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
{
}
/* When Acknowledge failure occurs (Slave don't acknowledge it's address)
Master restarts communication */
}
while(HAL_I2C_GetError(&I2cHandle) == HAL_I2C_ERROR_AF);
/* Check correctness of received buffer ##################################*/
if(Buffercmp((uint8_t*)aTxBuffer,(uint8_t*)aRxBuffer,hRxNumData))
{
/* Processing Error */
Error_Handler();
}
/* Flush Rx buffers */
Flush_Buffer((uint8_t*)aRxBuffer,RXBUFFERSIZE);
/* Toggle LED2 */
BSP_LED_Toggle(LED2);
/* This delay permits to see LED2 toggling */
HAL_Delay(25);
}
#else
while(1)
{
/* Initialize number of data variables */
hTxNumData = 0;
hRxNumData = 0;
/*##-2- Slave receive request from master ################################*/
while(HAL_I2C_Slave_Receive_IT(&I2cHandle, (uint8_t*)&bTransferRequest, 1)!= HAL_OK)
{
}
/* Before starting a new communication transfer, you need to check the current
state of the peripheral; if it<69>s busy you need to wait for the end of current
transfer before starting a new one.
For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
{
}
/* If master request write operation #####################################*/
if (bTransferRequest == MASTER_REQ_WRITE)
{
/*##-3- Slave receive number of data to be read ########################*/
while(HAL_I2C_Slave_Receive_IT(&I2cHandle, (uint8_t*)&hRxNumData, 2)!= HAL_OK);
/* Before starting a new communication transfer, you need to check the current
state of the peripheral; if it<69>s busy you need to wait for the end of current
transfer before starting a new one.
For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
{
}
/*##-4- Slave receives aRxBuffer from master ###########################*/
while(HAL_I2C_Slave_Receive_IT(&I2cHandle, (uint8_t*)aRxBuffer, hRxNumData)!= HAL_OK);
/* Before starting a new communication transfer, you need to check the current
state of the peripheral; if it<69>s busy you need to wait for the end of current
transfer before starting a new one.
For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
{
}
/* Check correctness of received buffer ################################*/
if(Buffercmp((uint8_t*)aTxBuffer,(uint8_t*)aRxBuffer,hRxNumData))
{
/* Processing Error */
Error_Handler();
}
/* Flush Rx buffers */
Flush_Buffer((uint8_t*)aRxBuffer,RXBUFFERSIZE);
/* Toggle LED2 */
BSP_LED_Toggle(LED2);
}
/* If master request write operation #####################################*/
else
{
/*##-3- Slave receive number of data to be written #####################*/
while(HAL_I2C_Slave_Receive_IT(&I2cHandle, (uint8_t*)&hTxNumData, 2)!= HAL_OK);
/* Before starting a new communication transfer, you need to check the current
state of the peripheral; if it<69>s busy you need to wait for the end of current
transfer before starting a new one.
For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
{
}
/*##-4- Slave transmit aTxBuffer to master #############################*/
while(HAL_I2C_Slave_Transmit_IT(&I2cHandle, (uint8_t*)aTxBuffer, RXBUFFERSIZE)!= HAL_OK);
/* Before starting a new communication transfer, you need to check the current
state of the peripheral; if it<69>s busy you need to wait for the end of current
transfer before starting a new one.
For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
{
}
}
}
#endif /* MASTER_BOARD */
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSI)
* SYSCLK(Hz) = 64000000
* HCLK(Hz) = 64000000
* AHB Prescaler = 1
* APB1 Prescaler = 2
* APB2 Prescaler = 1
* PLLMUL = RCC_PLL_MUL16 (16)
* Flash Latency(WS) = 2
* @param None
* @retval None
*/
void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
/* HSI Oscillator already ON after system reset, activate PLL with HSI as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_NONE;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct)!= HAL_OK)
{
/* Initialization Error */
while(1);
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2)!= HAL_OK)
{
/* Initialization Error */
while(1);
}
}
/**
* @brief I2C error callbacks.
* @param I2cHandle: I2C handle
* @note This example shows a simple way to report transfer error, and you can
* add your own implementation.
* @retval None
*/
void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *I2cHandle)
{
/** Error_Handler() function is called when error occurs.
* 1- When Slave don't acknowledge it's address, Master restarts communication.
* 2- When Master don't acknowledge the last data transferred, Slave don't care in this example.
*/
if (HAL_I2C_GetError(I2cHandle) != HAL_I2C_ERROR_AF)
{
Error_Handler();
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* Error if LED2 is slowly blinking (1 sec. period) */
while(1)
{
BSP_LED_Toggle(LED2);
HAL_Delay(1000);
}
}
/**
* @brief Compares two buffers.
* @param pBuffer1, pBuffer2: buffers to be compared.
* @param BufferLength: buffer's length
* @retval 0 : pBuffer1 identical to pBuffer2
* >0 : pBuffer1 differs from pBuffer2
*/
static uint16_t Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength)
{
while (BufferLength--)
{
if ((*pBuffer1) != *pBuffer2)
{
return BufferLength;
}
pBuffer1++;
pBuffer2++;
}
return 0;
}
/**
* @brief Flushes the buffer
* @param pBuffer: buffers to be flushed.
* @param BufferLength: buffer's length
* @retval None
*/
static void Flush_Buffer(uint8_t* pBuffer, uint16_t BufferLength)
{
while (BufferLength--)
{
*pBuffer = 0;
pBuffer++;
}
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(char* file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/