2019-10-18 16:39:08 +01:00

1510 lines
44 KiB
C

/**
******************************************************************************
* @file stm32373c_eval.c
* @author MCD Application Team
* @brief This file provides a set of firmware functions to manage LEDs,
* push-button and COM port available on STM32373C-EVAL evaluation
* board (MB988) RevB from STMicroelectronics.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32373c_eval.h"
/** @addtogroup BSP
* @{
*/
/** @addtogroup STM32373C_EVAL
* @brief This file provides firmware functions to manage Leds, push-buttons,
* COM ports, SD card and temperature sensor available on
* STM32373C-EVAL evaluation board from STMicroelectronics.
* @{
*/
/** @addtogroup STM32373C_EVAL_Common
* @{
*/
/** @addtogroup STM32373C_EVAL_Private_Constants
* @{
*/
/* LINK LCD */
#define START_BYTE 0x70
#define SET_INDEX 0x00
#define READ_STATUS 0x01
#define LCD_WRITE_REG 0x02
#define LCD_READ_REG 0x03
/* LINK SD Card */
#define SD_DUMMY_BYTE 0xFF
#define SD_NO_RESPONSE_EXPECTED 0x80
/**
* @brief STM32373C EVAL BSP Driver version number V2.2.2
*/
#define __STM32373C_EVAL_BSP_VERSION_MAIN (0x02) /*!< [31:24] main version */
#define __STM32373C_EVAL_BSP_VERSION_SUB1 (0x02) /*!< [23:16] sub1 version */
#define __STM32373C_EVAL_BSP_VERSION_SUB2 (0x02) /*!< [15:8] sub2 version */
#define __STM32373C_EVAL_BSP_VERSION_RC (0x00) /*!< [7:0] release candidate */
#define __STM32373C_EVAL_BSP_VERSION ((__STM32373C_EVAL_BSP_VERSION_MAIN << 24)\
|(__STM32373C_EVAL_BSP_VERSION_SUB1 << 16)\
|(__STM32373C_EVAL_BSP_VERSION_SUB2 << 8 )\
|(__STM32373C_EVAL_BSP_VERSION_RC))
/**
* @}
*/
/** @addtogroup STM32373C_EVAL_Private_Variables
* @{
*/
/**
* @brief LED variables
*/
GPIO_TypeDef* LED_PORT[LEDn] = {LED1_GPIO_PORT,
LED2_GPIO_PORT,
LED3_GPIO_PORT,
LED4_GPIO_PORT};
const uint16_t LED_PIN[LEDn] = {LED1_PIN,
LED2_PIN,
LED3_PIN,
LED4_PIN};
/**
* @brief BUTTON variables
*/
GPIO_TypeDef* BUTTON_PORT[BUTTONn] = {TAMPER_BUTTON_GPIO_PORT,
KEY_BUTTON_GPIO_PORT,
SEL_JOY_GPIO_PORT,
LEFT_JOY_GPIO_PORT,
RIGHT_JOY_GPIO_PORT,
DOWN_JOY_GPIO_PORT,
UP_JOY_GPIO_PORT};
const uint16_t BUTTON_PIN[BUTTONn] = {TAMPER_BUTTON_PIN,
KEY_BUTTON_PIN,
SEL_JOY_PIN,
LEFT_JOY_PIN,
RIGHT_JOY_PIN,
DOWN_JOY_PIN,
UP_JOY_PIN};
const uint16_t BUTTON_IRQn[BUTTONn] = {TAMPER_BUTTON_EXTI_IRQn,
KEY_BUTTON_EXTI_IRQn,
SEL_JOY_EXTI_IRQn,
LEFT_JOY_EXTI_IRQn,
RIGHT_JOY_EXTI_IRQn,
DOWN_JOY_EXTI_IRQn,
UP_JOY_EXTI_IRQn};
/**
* @brief JOYSTICK variables
*/
GPIO_TypeDef* JOY_PORT[JOYn] = {SEL_JOY_GPIO_PORT,
LEFT_JOY_GPIO_PORT,
RIGHT_JOY_GPIO_PORT,
DOWN_JOY_GPIO_PORT,
UP_JOY_GPIO_PORT};
const uint16_t JOY_PIN[JOYn] = {SEL_JOY_PIN,
LEFT_JOY_PIN,
RIGHT_JOY_PIN,
DOWN_JOY_PIN,
UP_JOY_PIN};
const uint8_t JOY_IRQn[JOYn] = {SEL_JOY_EXTI_IRQn,
LEFT_JOY_EXTI_IRQn,
RIGHT_JOY_EXTI_IRQn,
DOWN_JOY_EXTI_IRQn,
UP_JOY_EXTI_IRQn};
/**
* @brief COM variables
*/
#if defined(HAL_UART_MODULE_ENABLED)
USART_TypeDef* COM_USART[COMn] = {EVAL_COM1};
GPIO_TypeDef* COM_TX_PORT[COMn] = {EVAL_COM1_TX_GPIO_PORT};
GPIO_TypeDef* COM_RX_PORT[COMn] = {EVAL_COM1_RX_GPIO_PORT};
const uint16_t COM_TX_PIN[COMn] = {EVAL_COM1_TX_PIN};
const uint16_t COM_RX_PIN[COMn] = {EVAL_COM1_RX_PIN};
const uint16_t COM_TX_AF[COMn] = {EVAL_COM1_TX_AF};
const uint16_t COM_RX_AF[COMn] = {EVAL_COM1_RX_AF};
#endif /* HAL_UART_MODULE_ENABLED) */
/**
* @brief BUS variables
*/
#if defined(HAL_I2C_MODULE_ENABLED)
uint32_t I2c1Timeout = EVAL_I2C1_TIMEOUT_MAX; /*<! Value of Timeout when I2C1 communication fails */
uint32_t I2c2Timeout = EVAL_I2C2_TIMEOUT_MAX; /*<! Value of Timeout when I2C2 communication fails */
I2C_HandleTypeDef heval_I2c1;
I2C_HandleTypeDef heval_I2c2;
#endif /* HAL_I2C_MODULE_ENABLED */
#if defined(HAL_SPI_MODULE_ENABLED)
uint32_t SpixTimeout = EVAL_SPIx_TIMEOUT_MAX; /*<! Value of Timeout when SPI communication fails */
static SPI_HandleTypeDef heval_Spi;
#endif /* HAL_SPI_MODULE_ENABLED */
/**
* @}
*/
/** @defgroup STM32373C_EVAL_BUS Bus Operation functions
* @{
*/
#if defined(HAL_I2C_MODULE_ENABLED)
/* I2Cx bus function */
static void I2C1_Init(void);
static HAL_StatusTypeDef I2C1_TransmitData(uint8_t *pBuffer, uint16_t Length);
static void I2C1_Error(void);
static void I2C1_MspInit(I2C_HandleTypeDef *hi2c);
static void I2C2_Init(void);
static void I2C2_WriteData(uint16_t Addr, uint8_t Reg, uint16_t RegSize, uint8_t Value);
static HAL_StatusTypeDef I2C2_WriteBuffer(uint16_t Addr, uint8_t Reg, uint16_t RegSize, uint8_t *pBuffer, uint16_t Length);
static uint8_t I2C2_ReadData(uint16_t Addr, uint8_t Reg, uint16_t RegSize);
static HAL_StatusTypeDef I2C2_ReadBuffer(uint16_t Addr, uint8_t Reg, uint16_t RegSize, uint8_t *pBuffer, uint16_t Length);
static HAL_StatusTypeDef I2C2_ReceiveData(uint16_t Addr, uint8_t * pBuffer, uint16_t Length);
static HAL_StatusTypeDef I2C2_IsDeviceReady(uint16_t DevAddress, uint32_t Trials);
static void I2C2_Error(void);
static void I2C2_MspInit(I2C_HandleTypeDef *hi2c);
/* Link functions for EEPROM peripheral */
void EEPROM_IO_Init(void);
HAL_StatusTypeDef EEPROM_IO_WriteData(uint16_t DevAddress, uint16_t MemAddress, uint8_t* pBuffer, uint32_t BufferSize);
HAL_StatusTypeDef EEPROM_IO_ReadData(uint16_t DevAddress, uint16_t MemAddress, uint8_t* pBuffer, uint32_t BufferSize);
HAL_StatusTypeDef EEPROM_IO_IsDeviceReady(uint16_t DevAddress, uint32_t Trials);
/* Link functions for Temperature Sensor peripheral */
void TSENSOR_IO_Init(void);
void TSENSOR_IO_Write(uint16_t DevAddress, uint8_t* pBuffer, uint8_t WriteAddr, uint16_t Length);
void TSENSOR_IO_Read(uint16_t DevAddress, uint8_t* pBuffer, uint8_t ReadAddr, uint16_t Length);
uint16_t TSENSOR_IO_IsDeviceReady(uint16_t DevAddress, uint32_t Trials);
/* Link functions for Audio Codec peripheral */
void AUDIO_IO_Init(void);
void AUDIO_IO_DeInit(void);
void AUDIO_IO_Write(uint16_t DevAddress, uint8_t Reg, uint8_t Value);
uint8_t AUDIO_IO_Read(uint16_t DevAddress, uint8_t Reg);
/* Link functions for CEC peripheral */
void HDMI_CEC_IO_Init(void);
HAL_StatusTypeDef HDMI_CEC_IO_WriteData(uint8_t * pBuffer, uint16_t BufferSize);
HAL_StatusTypeDef HDMI_CEC_IO_ReadData(uint16_t DevAddress, uint8_t * pBuffer, uint16_t BufferSize);
#endif /* HAL_I2C_MODULE_ENABLED */
#if defined(HAL_SPI_MODULE_ENABLED)
/* SPIx bus function */
static void SPIx_Init(void);
static void SPIx_Write(uint8_t Value);
static uint32_t SPIx_Read(void);
static void SPIx_Error (void);
static void SPIx_MspInit(SPI_HandleTypeDef *hspi);
/* Link functions for LCD peripheral over SPI */
void LCD_IO_Init(void);
void LCD_IO_WriteMultipleData(uint8_t *pData, uint32_t Size);
void LCD_IO_WriteReg(uint8_t Reg);
uint16_t LCD_IO_ReadData(uint16_t Reg);
void LCD_Delay(uint32_t delay);
/* Link functions for SD Card peripheral over SPI */
void SD_IO_Init(void);
HAL_StatusTypeDef SD_IO_WriteCmd(uint8_t Cmd, uint32_t Arg, uint8_t Crc, uint8_t Response);
HAL_StatusTypeDef SD_IO_WaitResponse(uint8_t Response);
void SD_IO_WriteDummy(void);
void SD_IO_WriteByte(uint8_t Data);
uint8_t SD_IO_ReadByte(void);
#endif /* HAL_SPI_MODULE_ENABLED */
/**
* @}
*/
/** @addtogroup STM32373C_EVAL_Exported_Functions
* @{
*/
/**
* @brief This method returns the STM32373C EVAL BSP Driver revision
* @retval version : 0xXYZR (8bits for each decimal, R for RC)
*/
uint32_t BSP_GetVersion(void)
{
return __STM32373C_EVAL_BSP_VERSION;
}
/**
* @brief Configures LED GPIO.
* @param Led Specifies the Led to be configured.
* This parameter can be one of following parameters:
* @arg LED1
* @arg LED2
* @arg LED3
* @arg LED4
* @retval None
*/
void BSP_LED_Init(Led_TypeDef Led)
{
GPIO_InitTypeDef GPIO_InitStruct;
/* Enable the GPIO_LED clock */
LEDx_GPIO_CLK_ENABLE(Led);
/* Configure the GPIO_LED pin */
GPIO_InitStruct.Pin = LED_PIN[Led];
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(LED_PORT[Led], &GPIO_InitStruct);
HAL_GPIO_WritePin(LED_PORT[Led], LED_PIN[Led], GPIO_PIN_SET);
}
/**
* @brief Turns selected LED On.
* @param Led Specifies the Led to be set on.
* This parameter can be one of following parameters:
* @arg LED1
* @arg LED2
* @arg LED3
* @arg LED4
* @retval None
*/
void BSP_LED_On(Led_TypeDef Led)
{
HAL_GPIO_WritePin(LED_PORT[Led], LED_PIN[Led], GPIO_PIN_RESET);
}
/**
* @brief Turns selected LED Off.
* @param Led Specifies the Led to be set off.
* This parameter can be one of following parameters:
* @arg LED1
* @arg LED2
* @arg LED3
* @arg LED4
* @retval None
*/
void BSP_LED_Off(Led_TypeDef Led)
{
HAL_GPIO_WritePin(LED_PORT[Led], LED_PIN[Led], GPIO_PIN_SET);
}
/**
* @brief Toggles the selected LED.
* @param Led Specifies the Led to be toggled.
* This parameter can be one of following parameters:
* @arg LED1
* @arg LED2
* @arg LED3
* @arg LED4
* @retval None
*/
void BSP_LED_Toggle(Led_TypeDef Led)
{
HAL_GPIO_TogglePin(LED_PORT[Led], LED_PIN[Led]);
}
/**
* @brief Configures push button GPIO and EXTI Line.
* @param Button Button to be configured
* This parameter can be one of the following values:
* @arg BUTTON_TAMPER: Tamper Push Button
* @arg BUTTON_KEY : Key Push Button
* @param Mode Button mode
* This parameter can be one of the following values:
* @arg BUTTON_MODE_GPIO: Button will be used as simple IO
* @arg BUTTON_MODE_EXTI: Button will be connected to EXTI line
* with interrupt generation capability
* @retval None
*/
void BSP_PB_Init(Button_TypeDef Button, ButtonMode_TypeDef Mode)
{
GPIO_InitTypeDef GPIO_InitStruct;
/* Enable the corresponding Push Button clock */
BUTTONx_GPIO_CLK_ENABLE(Button);
/* Configure Button pin as input */
GPIO_InitStruct.Pin = BUTTON_PIN[Button];
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
if (Mode == BUTTON_MODE_GPIO)
{
/* Configure Button pin as input */
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
HAL_GPIO_Init(BUTTON_PORT[Button], &GPIO_InitStruct);
}
if (Mode == BUTTON_MODE_EXTI)
{
/* Configure Button pin as input with External interrupt */
if(Button != BUTTON_KEY)
{
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
}
else
{
GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
}
HAL_GPIO_Init(BUTTON_PORT[Button], &GPIO_InitStruct);
/* Enable and set Button EXTI Interrupt to the lowest priority */
HAL_NVIC_SetPriority((IRQn_Type)(BUTTON_IRQn[Button]), 0x0F, 0x00);
HAL_NVIC_EnableIRQ((IRQn_Type)(BUTTON_IRQn[Button]));
}
}
/**
* @brief Returns the selected button state.
* @param Button Button to be checked.
* This parameter can be one of the following values:
* @arg BUTTON_TAMPER: Tamper Push Button
* @arg BUTTON_KEY: Key Push Button
* @retval The Button GPIO pin value
*/
uint32_t BSP_PB_GetState(Button_TypeDef Button)
{
return HAL_GPIO_ReadPin(BUTTON_PORT[Button], BUTTON_PIN[Button]);
}
/**
* @brief Configures all button of the joystick in GPIO or EXTI modes.
* @param Joy_Mode Joystick mode.
* This parameter can be one of the following values:
* @arg JOY_MODE_GPIO: Joystick pins will be used as simple IOs
* @arg JOY_MODE_EXTI: Joystick pins will be connected to EXTI line
* with interrupt generation capability
* @retval HAL_OK: if all initializations are OK. Other value if error.
*/
uint8_t BSP_JOY_Init(JOYMode_TypeDef Joy_Mode)
{
JOYState_TypeDef joykey;
GPIO_InitTypeDef GPIO_InitStruct;
/* Initialized the Joystick. */
for(joykey = JOY_SEL; joykey < (JOY_SEL+JOYn) ; joykey++)
{
/* Enable the JOY clock */
JOYx_GPIO_CLK_ENABLE(joykey);
GPIO_InitStruct.Pin = JOY_PIN[joykey];
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
if (Joy_Mode == JOY_MODE_GPIO)
{
/* Configure Joy pin as input */
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
HAL_GPIO_Init(JOY_PORT[joykey], &GPIO_InitStruct);
}
if (Joy_Mode == JOY_MODE_EXTI)
{
/* Configure Joy pin as input with External interrupt */
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
HAL_GPIO_Init(JOY_PORT[joykey], &GPIO_InitStruct);
/* Enable and set Joy EXTI Interrupt to the lowest priority */
HAL_NVIC_SetPriority((IRQn_Type)(JOY_IRQn[joykey]), 0x0F, 0x00);
HAL_NVIC_EnableIRQ((IRQn_Type)(JOY_IRQn[joykey]));
}
}
return HAL_OK;
}
/**
* @brief Returns the current joystick status.
* @retval Code of the joystick key pressed
* This code can be one of the following values:
* @arg JOY_NONE
* @arg JOY_SEL
* @arg JOY_DOWN
* @arg JOY_LEFT
* @arg JOY_RIGHT
* @arg JOY_UP
* @arg JOY_NONE
*/
JOYState_TypeDef BSP_JOY_GetState(void)
{
JOYState_TypeDef joykey;
for(joykey = JOY_SEL; joykey < (JOY_SEL+JOYn) ; joykey++)
{
if(HAL_GPIO_ReadPin(JOY_PORT[joykey], JOY_PIN[joykey]) == GPIO_PIN_SET)
{
/* Return Code Joystick key pressed */
return joykey;
}
}
/* No Joystick key pressed */
return JOY_NONE;
}
#if defined(HAL_UART_MODULE_ENABLED)
/**
* @brief Configures COM port.
* @param COM Specifies the COM port to be configured.
* This parameter can be one of following parameters:
* @arg COM1
* @param huart pointer to a UART_HandleTypeDef structure that
* contains the configuration information for the specified UART peripheral.
* @retval None
*/
void BSP_COM_Init(COM_TypeDef COM, UART_HandleTypeDef* huart)
{
GPIO_InitTypeDef GPIO_InitStruct;
/* Enable GPIO clock */
COMx_TX_GPIO_CLK_ENABLE(COM);
COMx_RX_GPIO_CLK_ENABLE(COM);
/* Enable USART clock */
COMx_CLK_ENABLE(COM);
/* Configure USART Tx as alternate function push-pull */
GPIO_InitStruct.Pin = COM_TX_PIN[COM];
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Alternate = COM_TX_AF[COM];
HAL_GPIO_Init(COM_TX_PORT[COM], &GPIO_InitStruct);
/* Configure USART Rx as alternate function push-pull */
GPIO_InitStruct.Pin = COM_RX_PIN[COM];
GPIO_InitStruct.Alternate = COM_RX_AF[COM];
HAL_GPIO_Init(COM_RX_PORT[COM], &GPIO_InitStruct);
/* USART configuration */
huart->Instance = COM_USART[COM];
HAL_UART_Init(huart);
}
#endif /* HAL_UART_MODULE_ENABLED) */
/**
* @}
*/
/** @addtogroup STM32373C_EVAL_BUS
* @{
*/
/*******************************************************************************
BUS OPERATIONS
*******************************************************************************/
#if defined(HAL_I2C_MODULE_ENABLED)
/******************************* I2C Routines**********************************/
/**
* @brief Initializes I2C1 MSP
* @param hi2c I2C handle
* @retval None
*/
static void I2C1_MspInit(I2C_HandleTypeDef *hi2c)
{
GPIO_InitTypeDef GPIO_InitStruct;
RCC_PeriphCLKInitTypeDef RCC_PeriphCLKInitStruct;
if (hi2c->Instance == EVAL_I2C1)
{
/*##-1- Set source clock to SYSCLK for I2C1 ################################################*/
RCC_PeriphCLKInitStruct.PeriphClockSelection = RCC_PERIPHCLK_I2C1;
RCC_PeriphCLKInitStruct.I2c1ClockSelection = RCC_I2C1CLKSOURCE_SYSCLK;
HAL_RCCEx_PeriphCLKConfig(&RCC_PeriphCLKInitStruct);
/*##-2- Configure the GPIOs ################################################*/
/* Enable GPIO clock */
EVAL_I2C1_GPIO_CLK_ENABLE();
/* Configure I2C SCL & SDA as alternate function */
GPIO_InitStruct.Pin = (EVAL_I2C1_SCL_PIN | EVAL_I2C1_SDA_PIN);
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = EVAL_I2C1_AF;
HAL_GPIO_Init(EVAL_I2C1_GPIO_PORT, &GPIO_InitStruct);
/*##-3- Configure the Eval I2C peripheral #######################################*/
/* Enable I2C clock */
EVAL_I2C1_CLK_ENABLE();
/* Force the I2C peripheral clock reset */
EVAL_I2C1_FORCE_RESET();
/* Release the I2C peripheral clock reset */
EVAL_I2C1_RELEASE_RESET();
}
}
/**
* @brief I2C Bus initialization
* @retval None
*/
static void I2C1_Init(void)
{
if(HAL_I2C_GetState(&heval_I2c1) == HAL_I2C_STATE_RESET)
{
heval_I2c1.Instance = EVAL_I2C1;
heval_I2c1.Init.Timing = I2C1_TIMING;
heval_I2c1.Init.OwnAddress1 = HDMI_CEC_I2C_ADDRESS;
heval_I2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
heval_I2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
heval_I2c1.Init.OwnAddress2 = 0;
heval_I2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
heval_I2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
heval_I2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
/* Init the I2C */
I2C1_MspInit(&heval_I2c1);
HAL_I2C_Init(&heval_I2c1);
}
}
/**
* @brief Write buffer through I2C.
* @param pBuffer The address of the data to be written
* @param Length buffer size to be written
* @retval None
*/
static HAL_StatusTypeDef I2C1_TransmitData(uint8_t *pBuffer, uint16_t Length)
{
HAL_StatusTypeDef status = HAL_OK;
status = HAL_I2C_Slave_Transmit(&heval_I2c1, pBuffer, Length, I2c1Timeout);
/* Check the communication status */
if(status != HAL_OK)
{
/* Execute user timeout callback */
I2C1_Error();
return HAL_ERROR;
}
return HAL_OK;
}
/**
* @brief Manages error callback by re-initializing I2C.
* @retval None
*/
static void I2C1_Error(void)
{
/* De-initialize the I2C communication BUS */
HAL_I2C_DeInit(&heval_I2c1);
/* Re-Initiaize the I2C communication BUS */
I2C1_Init();
}
/**
* @brief Initializes I2C2 MSP.
* @param hi2c I2C handle
* @retval None
*/
static void I2C2_MspInit(I2C_HandleTypeDef *hi2c)
{
GPIO_InitTypeDef GPIO_InitStruct;
RCC_PeriphCLKInitTypeDef RCC_PeriphCLKInitStruct;
RCC_PeriphCLKInitStruct.PeriphClockSelection = RCC_PERIPHCLK_I2C2;
RCC_PeriphCLKInitStruct.I2c2ClockSelection = RCC_I2C2CLKSOURCE_SYSCLK;
HAL_RCCEx_PeriphCLKConfig(&RCC_PeriphCLKInitStruct);
/* Enable GPIO clock */
EVAL_I2C2_GPIO_CLK_ENABLE();
/* Configure I2C SCL, SDA and SMBUS as alternate function */
GPIO_InitStruct.Pin = (EVAL_I2C2_SCL_PIN | EVAL_I2C2_SDA_PIN | EVAL_I2C2_SMBUS_PIN);
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Alternate = EVAL_I2C2_AF;
HAL_GPIO_Init(EVAL_I2C2_GPIO_PORT, &GPIO_InitStruct);
/* Enable I2C clock */
EVAL_I2C2_CLK_ENABLE();
/* Force the I2C peripheral clock reset */
EVAL_I2C2_FORCE_RESET();
/* Release the I2C peripheral clock reset */
EVAL_I2C2_RELEASE_RESET();
}
/**
* @brief I2C Bus initialization
* @retval None
*/
static void I2C2_Init(void)
{
if(HAL_I2C_GetState(&heval_I2c2) == HAL_I2C_STATE_RESET)
{
heval_I2c2.Instance = EVAL_I2C2;
heval_I2c2.Init.Timing = I2C2_TIMING;
heval_I2c2.Init.OwnAddress1 = 0;
heval_I2c2.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
heval_I2c2.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
heval_I2c2.Init.OwnAddress2 = 0;
heval_I2c2.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
heval_I2c2.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
heval_I2c2.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
/* Init the I2C */
I2C2_MspInit(&heval_I2c2);
HAL_I2C_Init(&heval_I2c2);
}
}
/**
* @brief Write a value in a register of the device through I2C.
* @param Addr Device address on I2C Bus.
* @param Reg The target register address to write
* @param RegSize The target register size (can be 8BIT or 16BIT)
* @param Value The target register value to be written
* @retval None
*/
static void I2C2_WriteData(uint16_t Addr, uint8_t Reg, uint16_t RegSize, uint8_t Value)
{
HAL_StatusTypeDef status = HAL_OK;
status = HAL_I2C_Mem_Write(&heval_I2c2, Addr, (uint16_t)Reg, RegSize, &Value, 1, I2c2Timeout);
/* Check the communication status */
if(status != HAL_OK)
{
/* Execute user timeout callback */
I2C2_Error();
}
}
/**
* @brief Write buffer through I2C.
* @param Addr Device address on I2C Bus.
* @param Reg The target register address to write
* @param RegSize The target register size (can be 8BIT or 16BIT)
* @param pBuffer The address of the data to be written
* @param Length buffer size to be written
* @retval HAL Status
*/
static HAL_StatusTypeDef I2C2_WriteBuffer(uint16_t Addr, uint8_t Reg, uint16_t RegSize, uint8_t *pBuffer, uint16_t Length)
{
HAL_StatusTypeDef status = HAL_OK;
status = HAL_I2C_Mem_Write(&heval_I2c2, Addr, (uint16_t)Reg, RegSize, pBuffer, Length, I2c2Timeout);
/* Check the communication status */
if(status != HAL_OK)
{
/* Execute user timeout callback */
I2C2_Error();
}
return status;
}
/**
* @brief Read a register of the device through I2C.
* @param Addr Device address on I2C Bus.
* @param pBuffer The address to store the read data
* @param Length buffer size to be read
* @retval None
*/
static HAL_StatusTypeDef I2C2_ReceiveData(uint16_t Addr, uint8_t * pBuffer, uint16_t Length)
{
HAL_StatusTypeDef status = HAL_OK;
status = HAL_I2C_Master_Receive(&heval_I2c2, Addr, pBuffer, Length, I2c2Timeout);
/* Check the communication status */
if(status != HAL_OK)
{
/* Execute user timeout callback */
I2C2_Error();
}
return status;
}
/**
* @brief Read a register of the device through I2C
* @param Addr Device address on I2C.
* @param Reg The target register address to read
* @param RegSize The target register size (can be 8BIT or 16BIT)
* @retval Read register value
*/
static uint8_t I2C2_ReadData(uint16_t Addr, uint8_t Reg, uint16_t RegSize)
{
HAL_StatusTypeDef status = HAL_OK;
uint8_t value = 0;
status = HAL_I2C_Mem_Read(&heval_I2c2, Addr, Reg, RegSize, &value, 1, I2c2Timeout);
/* Check the communication status */
if(status != HAL_OK)
{
/* Execute user timeout callback */
I2C2_Error();
}
return value;
}
/**
* @brief Reads buffer through I2C.
* @param Addr Device address on I2C
* @param Reg The target address to read
* @param RegSize The target register size (can be 8BIT or 16BIT)
* @param pBuffer The address to store the read data
* @param Length buffer size to be read
* @retval None
*/
static HAL_StatusTypeDef I2C2_ReadBuffer(uint16_t Addr, uint8_t Reg, uint16_t RegSize, uint8_t *pBuffer, uint16_t Length)
{
HAL_StatusTypeDef status = HAL_OK;
status = HAL_I2C_Mem_Read(&heval_I2c2, Addr, (uint16_t)Reg, RegSize, pBuffer, Length, I2c2Timeout);
/* Check the communication status */
if(status != HAL_OK)
{
/* Execute user timeout callback */
I2C2_Error();
}
return status;
}
/**
* @brief Checks if target device is ready for communication.
* @note This function is used with Memory devices
* @param DevAddress Target device address
* @param Trials Number of trials
* @retval HAL status
*/
static HAL_StatusTypeDef I2C2_IsDeviceReady(uint16_t DevAddress, uint32_t Trials)
{
return (HAL_I2C_IsDeviceReady(&heval_I2c2, DevAddress, Trials, I2c2Timeout));
}
/**
* @brief Manages error callback by re-initializing I2C.
* @retval None
*/
static void I2C2_Error(void)
{
/* De-initialize the I2C communication BUS */
HAL_I2C_DeInit(&heval_I2c2);
/* Re-Initiaize the I2C communication BUS */
I2C2_Init();
}
#endif /*HAL_I2C_MODULE_ENABLED*/
#if defined(HAL_SPI_MODULE_ENABLED)
/******************************* SPI Routines *********************************/
/**
* @brief Initializes SPI MSP.
* @param hspi SPI handle
* @retval None
*/
static void SPIx_MspInit(SPI_HandleTypeDef *hspi)
{
GPIO_InitTypeDef GPIO_InitStruct;
/* Enable SPI clock */
EVAL_SPIx_CLK_ENABLE();
/* enable SPI gpio clock */
EVAL_SPIx_GPIO_CLK_ENABLE();
/* configure SPI SCK, MOSI and MISO */
GPIO_InitStruct.Pin = (EVAL_SPIx_SCK_PIN | EVAL_SPIx_MOSI_PIN | EVAL_SPIx_MISO_PIN);
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Alternate = EVAL_SPIx_AF;
HAL_GPIO_Init(EVAL_SPIx_GPIO_PORT, &GPIO_InitStruct);
/* Force the SPI peripheral clock reset */
EVAL_SPIx_FORCE_RESET();
/* Release the SPI peripheral clock reset */
EVAL_SPIx_RELEASE_RESET();
}
/**
* @brief Initializes SPI HAL.
* @retval None
*/
static void SPIx_Init(void)
{
if(HAL_SPI_GetState(&heval_Spi) == HAL_SPI_STATE_RESET)
{
/* SPI Config */
heval_Spi.Instance = EVAL_SPIx;
/* SPI baudrate is set to 18 MHz (PCLK2/SPI_BaudRatePrescaler = 72/4 = 18 MHz) */
heval_Spi.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
heval_Spi.Init.Direction = SPI_DIRECTION_2LINES;
heval_Spi.Init.CLKPhase = SPI_PHASE_2EDGE;
heval_Spi.Init.CLKPolarity = SPI_POLARITY_HIGH;
heval_Spi.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
heval_Spi.Init.CRCPolynomial = 7;
heval_Spi.Init.DataSize = SPI_DATASIZE_8BIT;
heval_Spi.Init.FirstBit = SPI_FIRSTBIT_MSB;
heval_Spi.Init.NSS = SPI_NSS_SOFT;
heval_Spi.Init.TIMode = SPI_TIMODE_DISABLE;
heval_Spi.Init.Mode = SPI_MODE_MASTER;
SPIx_MspInit(&heval_Spi);
HAL_SPI_Init(&heval_Spi);
}
}
/**
* @brief SPI Read 4 bytes from device
* @retval Value read on the SPI
*/
static uint32_t SPIx_Read(void)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t readvalue = 0x0;
uint32_t writevalue = 0xFFFFFFFF;
status = HAL_SPI_TransmitReceive(&heval_Spi, (uint8_t*) &writevalue, (uint8_t*) &readvalue, 1, SpixTimeout);
/* Check the communication status */
if(status != HAL_OK)
{
/* Execute user timeout callback */
SPIx_Error();
}
return readvalue;
}
/**
* @brief SPI Write a byte to device
* @param Value value to be written
* @retval None
*/
static void SPIx_Write(uint8_t Value)
{
HAL_StatusTypeDef status = HAL_OK;
status = HAL_SPI_Transmit(&heval_Spi, (uint8_t*) &Value, 1, SpixTimeout);
/* Check the communication status */
if(status != HAL_OK)
{
/* Execute user timeout callback */
SPIx_Error();
}
}
/**
* @brief SPI error treatment function
* @retval None
*/
static void SPIx_Error (void)
{
/* De-initialize the SPI communication BUS */
HAL_SPI_DeInit(&heval_Spi);
/* Re- Initiaize the SPI communication BUS */
SPIx_Init();
}
#endif /*HAL_SPI_MODULE_ENABLED*/
/******************************************************************************
LINK OPERATIONS
*******************************************************************************/
/**
* @}
*/
/** @defgroup STM32373C_EVAL_LINK_OPERATIONS Link Operation functions
* @{
*/
#if defined(HAL_SPI_MODULE_ENABLED)
/********************************* LINK LCD ***********************************/
/**
* @brief Configures the LCD_SPI interface.
* @retval None
*/
void LCD_IO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
/* Configure the LCD Control pins ------------------------------------------*/
LCD_NCS_GPIO_CLK_ENABLE();
/* Configure NCS in Output Push-Pull mode */
GPIO_InitStruct.Pin = LCD_NCS_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(LCD_NCS_GPIO_PORT, &GPIO_InitStruct);
/* Set or Reset the control line */
LCD_CS_LOW();
LCD_CS_HIGH();
SPIx_Init();
}
/**
* @brief Write register value.
* @param pData Pointer on the register value
* @param Size Size of byte to transmit to the register
* @retval None
*/
void LCD_IO_WriteMultipleData(uint8_t *pData, uint32_t Size)
{
uint32_t counter = 0;
/* Reset LCD control line(/CS) and Send data */
LCD_CS_LOW();
/* Send Start Byte */
SPIx_Write(START_BYTE | LCD_WRITE_REG);
for (counter = Size; counter != 0; counter--)
{
while(((heval_Spi.Instance->SR) & SPI_FLAG_TXE) != SPI_FLAG_TXE)
{
}
/* Need to invert bytes for LCD*/
*((__IO uint8_t*)&heval_Spi.Instance->DR) = *(pData+1);
while(((heval_Spi.Instance->SR) & SPI_FLAG_TXE) != SPI_FLAG_TXE)
{
}
*((__IO uint8_t*)&heval_Spi.Instance->DR) = *pData;
counter--;
pData += 2;
}
/* Wait until the bus is ready before releasing Chip select */
while(((heval_Spi.Instance->SR) & SPI_FLAG_BSY) != RESET)
{
}
/* Reset LCD control line(/CS) and Send data */
LCD_CS_HIGH();
}
/**
* @brief register address.
* @param Reg
* @retval None
*/
void LCD_IO_WriteReg(uint8_t Reg)
{
/* Reset LCD control line(/CS) and Send command */
LCD_CS_LOW();
/* Send Start Byte */
SPIx_Write(START_BYTE | SET_INDEX);
/* Write 16-bit Reg Index (High Byte is 0) */
SPIx_Write(0x00);
SPIx_Write(Reg);
/* Deselect : Chip Select high */
LCD_CS_HIGH();
}
/**
* @brief Read register value.
* @retval None
*/
uint16_t LCD_IO_ReadData(uint16_t Reg)
{
uint32_t readvalue = 0;
/* Send Reg value to Read */
LCD_IO_WriteReg(Reg);
/* Reset LCD control line(/CS) and Send command */
LCD_CS_LOW();
/* Send Start Byte */
SPIx_Write(START_BYTE | LCD_READ_REG);
/* Read Upper Byte */
SPIx_Write(0xFF);
readvalue = SPIx_Read();
readvalue = readvalue << 8;
readvalue |= SPIx_Read();
HAL_Delay(10);
/* Deselect : Chip Select high */
LCD_CS_HIGH();
return readvalue;
}
/**
* @brief Wait for loop in ms.
* @param Delay in ms.
* @retval None
*/
void LCD_Delay (uint32_t Delay)
{
HAL_Delay(Delay);
}
/******************************** LINK SD Card ********************************/
/**
* @brief Initializes the SD Card and put it into StandBy State (Ready for
* data transfer).
* @retval None
*/
void SD_IO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
uint8_t counter;
/* SD_CS_GPIO and SD_DETECT_GPIO Periph clock enable */
SD_CS_GPIO_CLK_ENABLE();
SD_DETECT_GPIO_CLK_ENABLE();
/* Configure SD_CS_PIN pin: SD Card CS pin */
GPIO_InitStruct.Pin = SD_CS_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(SD_CS_GPIO_PORT, &GPIO_InitStruct);
/* Configure SD_DETECT_PIN pin: SD Card detect pin */
GPIO_InitStruct.Pin = SD_DETECT_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(SD_DETECT_GPIO_PORT, &GPIO_InitStruct);
/* Enable and set SD EXTI Interrupt to the lowest priority */
HAL_NVIC_SetPriority(SD_DETECT_EXTI_IRQn, 0x0F, 0);
HAL_NVIC_EnableIRQ(SD_DETECT_EXTI_IRQn);
/*------------Put SD in SPI mode--------------*/
/* SD SPI Config */
SPIx_Init();
/* SD chip select high */
SD_CS_HIGH();
/* Send dummy byte 0xFF, 10 times with CS high */
/* Rise CS and MOSI for 80 clocks cycles */
for (counter = 0; counter <= 9; counter++)
{
/* Send dummy byte 0xFF */
SD_IO_WriteByte(SD_DUMMY_BYTE);
}
}
/**
* @brief Write a byte on the SD.
* @param Data byte to send.
* @retval None
*/
void SD_IO_WriteByte(uint8_t Data)
{
/* Send the byte */
SPIx_Write(Data);
}
/**
* @brief Read a byte from the SD.
* @retval The received byte.
*/
uint8_t SD_IO_ReadByte(void)
{
uint8_t data = 0;
/* Get the received data */
data = SPIx_Read();
/* Return the shifted data */
return data;
}
/**
* @brief Send 5 bytes command to the SD card and get response
* @param Cmd The user expected command to send to SD card.
* @param Arg The command argument.
* @param Crc The CRC.
* @param Response Expected response from the SD card
* @retval HAL_StatusTypeDef HAL Status
*/
HAL_StatusTypeDef SD_IO_WriteCmd(uint8_t Cmd, uint32_t Arg, uint8_t Crc, uint8_t Response)
{
uint32_t counter = 0x00;
uint8_t frame[6];
/* Prepare Frame to send */
frame[0] = (Cmd | 0x40); /* Construct byte 1 */
frame[1] = (uint8_t)(Arg >> 24); /* Construct byte 2 */
frame[2] = (uint8_t)(Arg >> 16); /* Construct byte 3 */
frame[3] = (uint8_t)(Arg >> 8); /* Construct byte 4 */
frame[4] = (uint8_t)(Arg); /* Construct byte 5 */
frame[5] = (Crc); /* Construct CRC: byte 6 */
/* SD chip select low */
SD_CS_LOW();
/* Send Frame */
for (counter = 0; counter < 6; counter++)
{
SD_IO_WriteByte(frame[counter]); /* Send the Cmd bytes */
}
if(Response != SD_NO_RESPONSE_EXPECTED)
{
return SD_IO_WaitResponse(Response);
}
return HAL_OK;
}
/**
* @brief Wait response from the SD card
* @param Response Expected response from the SD card
* @retval HAL_StatusTypeDef HAL Status
*/
HAL_StatusTypeDef SD_IO_WaitResponse(uint8_t Response)
{
uint32_t timeout = 0xFFF;
/* Check if response is got or a timeout is happen */
while ((SD_IO_ReadByte() != Response) && timeout)
{
timeout--;
}
if (timeout == 0)
{
/* After time out */
return HAL_TIMEOUT;
}
else
{
/* Right response got */
return HAL_OK;
}
}
/**
* @brief Send dummy byte with CS High
* @retval None
*/
void SD_IO_WriteDummy(void)
{
/* SD chip select high */
SD_CS_HIGH();
/* Send Dummy byte 0xFF */
SD_IO_WriteByte(SD_DUMMY_BYTE);
}
#endif /* HAL_SPI_MODULE_ENABLED */
#if defined(HAL_I2C_MODULE_ENABLED)
/********************************* LINK I2C EEPROM *****************************/
/**
* @brief Initializes peripherals used by the I2C EEPROM driver.
* @retval None
*/
void EEPROM_IO_Init(void)
{
I2C2_Init();
}
/**
* @brief Write data to I2C EEPROM driver
* @param DevAddress Target device address
* @param MemAddress Internal memory address
* @param pBuffer Pointer to data buffer
* @param BufferSize Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef EEPROM_IO_WriteData(uint16_t DevAddress, uint16_t MemAddress, uint8_t* pBuffer, uint32_t BufferSize)
{
return (I2C2_WriteBuffer(DevAddress, MemAddress, I2C_MEMADD_SIZE_16BIT, pBuffer, BufferSize));
}
/**
* @brief Read data from I2C EEPROM driver
* @param DevAddress Target device address
* @param MemAddress Internal memory address
* @param pBuffer Pointer to data buffer
* @param BufferSize Amount of data to be read
* @retval HAL status
*/
HAL_StatusTypeDef EEPROM_IO_ReadData(uint16_t DevAddress, uint16_t MemAddress, uint8_t* pBuffer, uint32_t BufferSize)
{
return (I2C2_ReadBuffer(DevAddress, MemAddress, I2C_MEMADD_SIZE_16BIT, pBuffer, BufferSize));
}
/**
* @brief Checks if target device is ready for communication.
* @note This function is used with Memory devices
* @param DevAddress Target device address
* @param Trials Number of trials
* @retval HAL status
*/
HAL_StatusTypeDef EEPROM_IO_IsDeviceReady(uint16_t DevAddress, uint32_t Trials)
{
return (I2C2_IsDeviceReady(DevAddress, Trials));
}
/********************************* LINK I2C TEMPERATURE SENSOR *****************************/
/**
* @brief Initializes peripherals used by the I2C Temperature Sensor driver.
* @retval None
*/
void TSENSOR_IO_Init(void)
{
I2C2_Init();
}
/**
* @brief Writes one byte to the TSENSOR.
* @param DevAddress Target device address
* @param pBuffer Pointer to data buffer
* @param WriteAddr TSENSOR's internal address to write to.
* @param Length Number of data to write
* @retval None
*/
void TSENSOR_IO_Write(uint16_t DevAddress, uint8_t* pBuffer, uint8_t WriteAddr, uint16_t Length)
{
I2C2_WriteBuffer(DevAddress, WriteAddr, I2C_MEMADD_SIZE_8BIT, pBuffer, Length);
}
/**
* @brief Reads one byte from the TSENSOR.
* @param DevAddress Target device address
* @param pBuffer pointer to the buffer that receives the data read from the TSENSOR.
* @param ReadAddr TSENSOR's internal address to read from.
* @param Length Number of data to read
* @retval None
*/
void TSENSOR_IO_Read(uint16_t DevAddress, uint8_t* pBuffer, uint8_t ReadAddr, uint16_t Length)
{
I2C2_ReadBuffer(DevAddress, ReadAddr, I2C_MEMADD_SIZE_8BIT, pBuffer, Length);
}
/**
* @brief Checks if Temperature Sensor is ready for communication.
* @param DevAddress Target device address
* @param Trials Number of trials
* @retval HAL status
*/
uint16_t TSENSOR_IO_IsDeviceReady(uint16_t DevAddress, uint32_t Trials)
{
return (I2C2_IsDeviceReady(DevAddress, Trials));
}
/********************************* LINK AUDIO CODEC ***********************************/
/**
* @brief Initializes peripherals used by the Audio Codec driver.
* @retval None
*/
void AUDIO_IO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
/* Enable Reset GPIO Clock */
AUDIO_RESET_GPIO_CLK_ENABLE();
/* Audio reset pin configuration -------------------------------------------------*/
GPIO_InitStruct.Pin = AUDIO_RESET_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(AUDIO_RESET_GPIO_PORT, &GPIO_InitStruct);
I2C2_Init();
/* Power Down the codec */
CODEC_AUDIO_POWER_OFF();
/* wait for a delay to insure registers erasing */
HAL_Delay(5);
/* Power on the codec */
CODEC_AUDIO_POWER_ON();
/* wait for a delay to insure registers erasing */
HAL_Delay(5);
}
/**
* @brief DeInitializes Audio low level.
* @note This function is intentionally kept empty, user should define it.
*/
void AUDIO_IO_DeInit(void)
{
}
/**
* @brief Writes a single data on the Audio Codec.
* @param DevAddress Target device address
* @param Reg Target Register address
* @param Value Data to be written
* @retval None
*/
void AUDIO_IO_Write(uint16_t DevAddress, uint8_t Reg, uint8_t Value)
{
I2C2_WriteData(DevAddress, Reg, I2C_MEMADD_SIZE_8BIT, Value);
}
/**
* @brief Reads a single data from the Audio Codec.
* @param DevAddress Target device address
* @param Reg Target Register address
* @retval Data to be read
*/
uint8_t AUDIO_IO_Read(uint16_t DevAddress, uint8_t Reg)
{
uint8_t value;
value = I2C2_ReadData(DevAddress, Reg, I2C_MEMADD_SIZE_8BIT);
return value;
}
/****************************** LINK HDMI CEC *********************************/
/**
* @brief Initializes CEC low level.
* @retval None
*/
void HDMI_CEC_IO_Init (void)
{
GPIO_InitTypeDef GPIO_InitStruct;
/* Enable CEC clock */
__HAL_RCC_CEC_CLK_ENABLE();
/* Enable CEC LINE GPIO clock */
HDMI_CEC_LINE_CLK_ENABLE();
/* Configure CEC LINE GPIO as alternate function open drain */
GPIO_InitStruct.Pin = HDMI_CEC_LINE_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Alternate = HDMI_CEC_LINE_AF;
HAL_GPIO_Init(HDMI_CEC_LINE_GPIO_PORT, &GPIO_InitStruct);
/* CEC IRQ Channel configuration */
HAL_NVIC_SetPriority((IRQn_Type)HDMI_CEC_IRQn, 0xF, 0x0);
HAL_NVIC_EnableIRQ((IRQn_Type)HDMI_CEC_IRQn);
/* Enable CEC HPD SINK GPIO clock */
HDMI_CEC_HPD_SINK_CLK_ENABLE();
/* Configure CEC HPD SINK GPIO as output push pull */
GPIO_InitStruct.Pin = HDMI_CEC_HPD_SINK_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
HAL_GPIO_Init(HDMI_CEC_HPD_SINK_GPIO_PORT, &GPIO_InitStruct);
I2C1_Init();
/* Enable CEC HPD SOURCE GPIO clock */
HDMI_CEC_HPD_SOURCE_CLK_ENABLE();
/* Configure CEC HPD SOURCE GPIO as output push pull */
GPIO_InitStruct.Pin = HDMI_CEC_HPD_SOURCE_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
HAL_GPIO_Init(HDMI_CEC_HPD_SOURCE_GPIO_PORT, &GPIO_InitStruct);
I2C2_Init();
}
/**
* @brief Write data to I2C HDMI CEC driver
* @param pBuffer Pointer to data buffer
* @param BufferSize Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HDMI_CEC_IO_WriteData(uint8_t * pBuffer, uint16_t BufferSize)
{
return (I2C1_TransmitData(pBuffer, BufferSize));
}
/**
* @brief Read data to I2C HDMI CEC driver
* @param DevAddress Target device address
* @param pBuffer Pointer to data buffer
* @param BufferSize Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HDMI_CEC_IO_ReadData(uint16_t DevAddress, uint8_t * pBuffer, uint16_t BufferSize)
{
return (I2C2_ReceiveData(DevAddress, pBuffer, BufferSize));
}
#endif /* HAL_I2C_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/