2019-10-18 16:39:08 +01:00

302 lines
10 KiB
C

/**
******************************************************************************
* @file TIM/TIM_Combined/Src/main.c
* @author MCD Application Team
* @brief This sample code shows how to use STM32F3xx TIM HAL API to generate
* 3 PWM combined signals with TIM1 Channel5.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F3xx_HAL_Examples
* @{
*/
/** @addtogroup TIM_Combined
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Timer handler declaration */
TIM_HandleTypeDef TimHandle;
/* Timer Output Compare Configuration Structure declaration */
TIM_OC_InitTypeDef sConfig;
/* Private function prototypes -----------------------------------------------*/
static void SystemClock_Config(void);
static void Error_Handler(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program.
* @param None
* @retval None
*/
int main(void)
{
uint16_t TimerPeriod = 0;
uint16_t Channel1Pulse = 0, Channel2Pulse = 0, Channel3Pulse = 0, Channel5Pulse = 0;
/* STM32F3xx HAL library initialization:
- Configure the Flash prefetch
- Systick timer is configured by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
- Set NVIC Group Priority to 4
- Low Level Initialization
*/
HAL_Init();
/* Configure LED3 */
BSP_LED_Init(LED3);
/* Configure the system clock to have a system clock = 72 Mhz */
SystemClock_Config();
/*##-1- Configure the TIM peripheral #######################################*/
/* ---------------------------------------------------------------------------
Generate 3 combined PWM signals:
TIM1 input clock (TIM1CLK) is set to APB2 clock (PCLK2)
=> TIM1CLK = PCLK2 = SystemCoreClock
TIM1CLK = SystemCoreClock, Prescaler = 0, TIM1 counter clock = SystemCoreClock
SystemCoreClock is set to 72 MHz for STM32F30x devices
The objective is to generate 3 combined PWM signal at 8.78 KHz (in center aligned mode):
- TIM1_Period = (SystemCoreClock / (8.78*2)) - 1
The channel 1 duty cycle is set to 50%
The channel 2 duty cycle is set to 37.5%
The channel 3 duty cycle is set to 25%
The Timer pulse is calculated as follows:
- ChannelxPulse = DutyCycle * (TIM1_Period - 1) / 100
The channel 5 is used in PWM2 mode with duty cycle set to 6.22%
The 3 resulting signals are made of an AND logical combination of two reference PWMs:
- Channel 1 and Channel 5
- Channel 2 and Channel 5
- Channel 3 and Channel 5
Note:
SystemCoreClock variable holds HCLK frequency and is defined in system_stm32f3xx.c file.
Each time the core clock (HCLK) changes, user had to update SystemCoreClock
variable value. Otherwise, any configuration based on this variable will be incorrect.
This variable is updated in three ways:
1) by calling CMSIS function SystemCoreClockUpdate()
2) by calling HAL API function HAL_RCC_GetSysClockFreq()
3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency
--------------------------------------------------------------------------- */
/* Compute the value to be set in ARR regiter to generate signal frequency at 8.78 Khz */
TimerPeriod = (SystemCoreClock / 17570 ) - 1;
/* Compute CCR1 value to generate a duty cycle at 50% for channel 1 */
Channel1Pulse = (uint16_t) (((uint32_t) 5 * (TimerPeriod - 1)) / 10);
/* Compute CCR2 value to generate a duty cycle at 37.5% for channel 2 */
Channel2Pulse = (uint16_t) (((uint32_t) 375 * (TimerPeriod - 1)) / 1000);
/* Compute CCR3 value to generate a duty cycle at 25% for channel 3 */
Channel3Pulse = (uint16_t) (((uint32_t) 25 * (TimerPeriod - 1)) / 100);
/* Compute CCR5 value to generate a duty cycle at 6.22% for channel 5 (in PWM2)*/
Channel5Pulse = (uint16_t) (((uint32_t) 622 * (TimerPeriod - 1)) / 10000);
/* Initialize Timer TIM1 */
TimHandle.Instance = TIM1;
TimHandle.Init.Prescaler = 0;
TimHandle.Init.Period = TimerPeriod;
TimHandle.Init.ClockDivision = 0;
TimHandle.Init.CounterMode = TIM_COUNTERMODE_CENTERALIGNED1;
TimHandle.Init.RepetitionCounter = 0;
TimHandle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if(HAL_TIM_PWM_Init(&TimHandle) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/*##-2- Configure the PWM channels #########################################*/
/* Channels 1 configuration on TIM1 */
sConfig.OCMode = TIM_OCMODE_PWM1;
sConfig.Pulse = Channel1Pulse;
sConfig.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfig.OCNPolarity = TIM_OCNPOLARITY_HIGH;
sConfig.OCFastMode = TIM_OCFAST_DISABLE;
sConfig.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfig.OCNIdleState = TIM_OCNIDLESTATE_RESET;
if(HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_1) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/* Channels 2 configuration on TIM1 */
sConfig.Pulse = Channel2Pulse;
if(HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_2) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/* Channels 3 configuration on TIM1 */
sConfig.Pulse = Channel3Pulse;
if(HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_3) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/* Channels 5 configuration on TIM1 */
sConfig.OCMode = TIM_OCMODE_PWM2;
sConfig.Pulse = Channel5Pulse;
if(HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_5) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/*##-3- Group channel 5 and channels 1, 2 and 3 ############################*/
if(HAL_TIMEx_GroupChannel5(&TimHandle, (TIM_GROUPCH5_OC1REFC |\
TIM_GROUPCH5_OC2REFC |\
TIM_GROUPCH5_OC3REFC)) != HAL_OK)
{
/* Configuration Error */
Error_Handler();
}
/*##-4- Start PWM signals generation #######################################*/
/* Start TIM1 channel 1 */
if(HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_1) != HAL_OK)
{
/* PWM Generation Error */
Error_Handler();
}
/* Start TIM1 channel 2 */
if(HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_2) != HAL_OK)
{
/* PWM Generation Error */
Error_Handler();
}
/* Start TIM1 channel 3 */
if(HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_3) != HAL_OK)
{
/* PWM Generation Error */
Error_Handler();
}
/* Start TIM1 channel 5 */
if(HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_5) != HAL_OK)
{
/* PWM Generation Error */
Error_Handler();
}
while (1)
{
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* Turn LED3 on */
BSP_LED_On(LED3);
while(1)
{
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 72000000
* HCLK(Hz) = 72000000
* AHB Prescaler = 1
* APB1 Prescaler = 2
* APB2 Prescaler = 1
* HSE Frequency(Hz) = 8000000
* HSE PREDIV = 1
* PLLMUL = RCC_PLL_MUL9 (9)
* Flash Latency(WS) = 2
* @param None
* @retval None
*/
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct)!= HAL_OK)
{
Error_Handler();
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2)!= HAL_OK)
{
Error_Handler();
}
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/