mirror of
https://github.com/STMicroelectronics/STM32CubeF3.git
synced 2025-05-01 22:18:23 +08:00
380 lines
12 KiB
C
380 lines
12 KiB
C
/**
|
||
******************************************************************************
|
||
* @file I2C/I2C_EEPROM/Src/main.c
|
||
* @author MCD Application Team
|
||
* @brief This sample code shows how to use STM32F3xx I2C HAL API to transmit
|
||
* and receive a data buffer with a communication process based on
|
||
* DMA transfer.
|
||
* The communication is done using an EEPROM M24M01-HR
|
||
* on STM32373C-EVAL RevB Eval board.
|
||
* ===================================================================
|
||
* Notes:
|
||
* - This example is intended for STM32F373xC families devices only.
|
||
* - The I2C EEPROM memory (M24M01-HR) is compatible
|
||
* with the I2C Fast Mode Plus.
|
||
* Jumper JP4 and JP5 needs to be set in I2C2_F position.
|
||
* Jumper JP14 (E2P WC) needs to be set.
|
||
* ===================================================================
|
||
******************************************************************************
|
||
* @attention
|
||
*
|
||
* <h2><center>© Copyright (c) 2016 STMicroelectronics.
|
||
* All rights reserved.</center></h2>
|
||
*
|
||
* This software component is licensed by ST under BSD 3-Clause license,
|
||
* the "License"; You may not use this file except in compliance with the
|
||
* License. You may obtain a copy of the License at:
|
||
* opensource.org/licenses/BSD-3-Clause
|
||
*
|
||
******************************************************************************
|
||
*/
|
||
|
||
/* Includes ------------------------------------------------------------------*/
|
||
#include "main.h"
|
||
|
||
/** @addtogroup STM32F3xx_HAL_Examples
|
||
* @{
|
||
*/
|
||
|
||
/** @addtogroup I2C_EEPROM
|
||
* @{
|
||
*/
|
||
|
||
/* Private typedef -----------------------------------------------------------*/
|
||
/* Private define ------------------------------------------------------------*/
|
||
#define EEPROM_ADDRESS 0xA4 /* EEPROM M24M01-HR Address */
|
||
#define EEPROM_PAGESIZE 128 /* EEPROM M24M01-HR used */
|
||
#define EEPROM_LONG_TIMEOUT 1000 /* Long Timeout 1s */
|
||
#define EEPROM_MAX_TRIALS 300
|
||
|
||
/* When using M24M01-HR set TIMING to 0x00C4092A to reach 1 MHz speed */
|
||
/* (Rise time = 26ns, Fall time = 2ns) */
|
||
#define EEPROM_TIMING 0x00C4092A
|
||
|
||
/* Private macro -------------------------------------------------------------*/
|
||
/* Private variables ---------------------------------------------------------*/
|
||
/* I2C handler declaration */
|
||
I2C_HandleTypeDef I2cHandle;
|
||
|
||
/* Buffer used for transmission */
|
||
uint8_t aTxBuffer[] = "/* I2C HAL API EEPROM driver example: \
|
||
This firmware provides a basic example of how to use the I2C HAL API based on DMA and\
|
||
an associate I2C EEPROM driver to communicate with M24M01-HR EEPROM \
|
||
I2C peripheral is configured in Master transmitter during write operation and in\
|
||
Master receiver during read operation from I2C EEPROM.*/";
|
||
|
||
/* Buffer used for reception */
|
||
uint8_t aRxBuffer[RXBUFFERSIZE];
|
||
|
||
/* Useful variables during communication */
|
||
uint16_t Memory_Address;
|
||
int Remaining_Bytes;
|
||
uint32_t Timeout = EEPROM_LONG_TIMEOUT;
|
||
uint16_t NumOfData;
|
||
|
||
/* Private function prototypes -----------------------------------------------*/
|
||
void SystemClock_Config(void);
|
||
static uint16_t Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength);
|
||
static void Error_Handler(void);
|
||
|
||
/* Private functions ---------------------------------------------------------*/
|
||
|
||
/**
|
||
* @brief Main program
|
||
* @param None
|
||
* @retval None
|
||
*/
|
||
int main(void)
|
||
{
|
||
uint32_t Memory_Write_Trials = 0;
|
||
uint32_t Memory_Read_Trials = 0;
|
||
/* STM32F3xx HAL library initialization:
|
||
- Configure the Flash prefetch
|
||
- Systick timer is configured by default as source of time base, but user
|
||
can eventually implement his proper time base source (a general purpose
|
||
timer for example or other time source), keeping in mind that Time base
|
||
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
|
||
handled in milliseconds basis.
|
||
- Set NVIC Group Priority to 4
|
||
- Low Level Initialization
|
||
*/
|
||
HAL_Init();
|
||
|
||
/* Configure the system clock to 72 MHz */
|
||
SystemClock_Config();
|
||
|
||
/* Configure LED1, LED2 and LED3 */
|
||
BSP_LED_Init(LED1);
|
||
BSP_LED_Init(LED2);
|
||
BSP_LED_Init(LED3);
|
||
|
||
/*##-1- Configure the I2C peripheral ######################################*/
|
||
I2cHandle.Instance = I2Cx;
|
||
I2cHandle.Init.Timing = EEPROM_TIMING;
|
||
I2cHandle.Init.OwnAddress1 = 0x00;
|
||
I2cHandle.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
|
||
I2cHandle.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
|
||
I2cHandle.Init.OwnAddress2 = 0x00;
|
||
I2cHandle.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
|
||
I2cHandle.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
|
||
|
||
if(HAL_I2C_Init(&I2cHandle) != HAL_OK)
|
||
{
|
||
/* Initialization Error */
|
||
Error_Handler();
|
||
}
|
||
|
||
/* Enable the Analog I2C Filter */
|
||
HAL_I2CEx_ConfigAnalogFilter(&I2cHandle,I2C_ANALOGFILTER_ENABLE);
|
||
|
||
/* The board sends the message to EEPROM then reads it back */
|
||
|
||
/*##-2- Start writing process ##############################################*/
|
||
/* Initialize Remaining Bytes Value to TX Buffer Size */
|
||
Remaining_Bytes = TXBUFFERSIZE;
|
||
/* Initialize Memory address to 0 since EEPROM write will start from address 0 */
|
||
Memory_Address = 0;
|
||
/* Since page size is 128 bytes, the write procedure will be done in a loop */
|
||
while(Remaining_Bytes > 0)
|
||
{
|
||
do
|
||
{
|
||
/* Write EEPROM_PAGESIZE */
|
||
if (HAL_I2C_Mem_Write_DMA(&I2cHandle , (uint16_t)EEPROM_ADDRESS, Memory_Address, I2C_MEMADD_SIZE_16BIT, (uint8_t*)(aTxBuffer + Memory_Address), EEPROM_PAGESIZE)!= HAL_OK)
|
||
{
|
||
if (HAL_I2C_GetError(&I2cHandle) != HAL_I2C_ERROR_AF)
|
||
{
|
||
/* Writing process Error */
|
||
Error_Handler();
|
||
}
|
||
}
|
||
|
||
/* Increment Trials */
|
||
Memory_Write_Trials++;
|
||
}
|
||
while((Memory_Write_Trials < EEPROM_MAX_TRIALS) && (HAL_I2C_GetError(&I2cHandle) == HAL_I2C_ERROR_AF));
|
||
|
||
/* Clear Trials */
|
||
Memory_Write_Trials = 0;
|
||
|
||
/* Wait for the end of the transfer */
|
||
/* Before starting a new communication transfer, you need to check the current
|
||
state of the peripheral; if it<69>s busy you need to wait for the end of current
|
||
transfer before starting a new one.
|
||
For simplicity reasons, this example is just waiting till the end of the
|
||
transfer, but application may perform other tasks while transfer operation
|
||
is ongoing. */
|
||
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
|
||
{
|
||
}
|
||
|
||
/* Check if the EEPROM is ready for a new operation */
|
||
while (HAL_I2C_IsDeviceReady(&I2cHandle, EEPROM_ADDRESS, 10, 300) == HAL_TIMEOUT);
|
||
|
||
/* Wait for the end of the transfer */
|
||
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
|
||
{
|
||
}
|
||
|
||
/* Update Remaining bytes and Memory Address values */
|
||
Remaining_Bytes -= EEPROM_PAGESIZE;
|
||
Memory_Address += EEPROM_PAGESIZE;
|
||
}
|
||
|
||
/*##-3- Start reading process ##############################################*/
|
||
do
|
||
{
|
||
if(HAL_I2C_Mem_Read_DMA(&I2cHandle , (uint16_t)EEPROM_ADDRESS, 0, I2C_MEMADD_SIZE_16BIT, (uint8_t*)aRxBuffer, RXBUFFERSIZE)!= HAL_OK)
|
||
{
|
||
if (HAL_I2C_GetError(&I2cHandle) != HAL_I2C_ERROR_AF)
|
||
{
|
||
/* Reading process Error */
|
||
Error_Handler();
|
||
}
|
||
}
|
||
|
||
/* Increment Trials */
|
||
Memory_Read_Trials++;
|
||
}
|
||
while((Memory_Read_Trials < EEPROM_MAX_TRIALS) && (HAL_I2C_GetError(&I2cHandle) == HAL_I2C_ERROR_AF));
|
||
|
||
/* Clear Trials */
|
||
Memory_Read_Trials = 0;
|
||
|
||
/* Wait for the end of the transfer */
|
||
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
|
||
{
|
||
}
|
||
|
||
/*##-4- Compare the sent and received buffers ##############################*/
|
||
if(Buffercmp((uint8_t*)aTxBuffer, (uint8_t*)aRxBuffer, RXBUFFERSIZE))
|
||
{
|
||
/* Processing Error */
|
||
Error_Handler();
|
||
}
|
||
|
||
/* Infinite loop */
|
||
while (1)
|
||
{
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief System Clock Configuration
|
||
* The system Clock is configured as follow :
|
||
* System Clock source = PLL (HSE)
|
||
* SYSCLK(Hz) = 72000000
|
||
* HCLK(Hz) = 72000000
|
||
* AHB Prescaler = 1
|
||
* APB1 Prescaler = 2
|
||
* APB2 Prescaler = 1
|
||
* HSE Frequency(Hz) = 8000000
|
||
* HSE PREDIV = 1
|
||
* PLLMUL = RCC_PLL_MUL9 (9)
|
||
* Flash Latency(WS) = 2
|
||
* @param None
|
||
* @retval None
|
||
*/
|
||
void SystemClock_Config(void)
|
||
{
|
||
RCC_ClkInitTypeDef RCC_ClkInitStruct;
|
||
RCC_OscInitTypeDef RCC_OscInitStruct;
|
||
|
||
/* Enable HSE Oscillator and activate PLL with HSE as source */
|
||
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
|
||
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
|
||
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
|
||
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
|
||
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
|
||
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
|
||
if (HAL_RCC_OscConfig(&RCC_OscInitStruct)!= HAL_OK)
|
||
{
|
||
/* Initialization Error */
|
||
while(1);
|
||
}
|
||
|
||
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
|
||
clocks dividers */
|
||
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
|
||
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
|
||
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
|
||
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
|
||
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
|
||
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2)!= HAL_OK)
|
||
{
|
||
/* Initialization Error */
|
||
while(1);
|
||
}
|
||
}
|
||
/**
|
||
* @brief Tx Transfer completed callback.
|
||
* @param I2cHandle: I2C handle
|
||
* @note This example shows a simple way to report end of DMA Tx transfer, and
|
||
* you can add your own implementation.
|
||
* @retval None
|
||
*/
|
||
void HAL_I2C_MemTxCpltCallback(I2C_HandleTypeDef *I2cHandle)
|
||
{
|
||
/* Turn LED1 on: Transfer in transmission process is correct */
|
||
BSP_LED_On(LED1);
|
||
}
|
||
|
||
/**
|
||
* @brief Rx Transfer completed callback.
|
||
* @param I2cHandle: I2C handle
|
||
* @note This example shows a simple way to report end of DMA Rx transfer, and
|
||
* you can add your own implementation.
|
||
* @retval None
|
||
*/
|
||
void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *I2cHandle)
|
||
{
|
||
/* Turn LED2 on: Transfer in reception process is correct */
|
||
BSP_LED_On(LED2);
|
||
}
|
||
|
||
/**
|
||
* @brief I2C error callbacks.
|
||
* @param I2cHandle: I2C handle
|
||
* @note This example shows a simple way to report transfer error, and you can
|
||
* add your own implementation.
|
||
* @retval None
|
||
*/
|
||
void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *I2cHandle)
|
||
{
|
||
/** 1- When Slave don't acknowledge it's address, Master restarts communication.
|
||
* 2- When Master don't acknowledge the last data transferred, Slave don't care in this example.
|
||
*/
|
||
if (HAL_I2C_GetError(I2cHandle) != HAL_I2C_ERROR_AF)
|
||
{
|
||
/* Turn LED3 on: Transfer error in reception/transmission process */
|
||
BSP_LED_On(LED3);
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief This function is executed in case of error occurrence.
|
||
* @param None
|
||
* @retval None
|
||
*/
|
||
static void Error_Handler(void)
|
||
{
|
||
/* Turn LED3 on */
|
||
BSP_LED_On(LED3);
|
||
while(1)
|
||
{
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief Compares two buffers.
|
||
* @param pBuffer1, pBuffer2: buffers to be compared.
|
||
* @param BufferLength: buffer's length
|
||
* @retval 0 : pBuffer1 identical to pBuffer2
|
||
* >0 : pBuffer1 differs from pBuffer2
|
||
*/
|
||
static uint16_t Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength)
|
||
{
|
||
while (BufferLength--)
|
||
{
|
||
if ((*pBuffer1) != *pBuffer2)
|
||
{
|
||
return BufferLength;
|
||
}
|
||
pBuffer1++;
|
||
pBuffer2++;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
#ifdef USE_FULL_ASSERT
|
||
|
||
/**
|
||
* @brief Reports the name of the source file and the source line number
|
||
* where the assert_param error has occurred.
|
||
* @param file: pointer to the source file name
|
||
* @param line: assert_param error line source number
|
||
* @retval None
|
||
*/
|
||
void assert_failed(uint8_t* file, uint32_t line)
|
||
{
|
||
/* User can add his own implementation to report the file name and line number,
|
||
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
|
||
|
||
/* Infinite loop */
|
||
while (1)
|
||
{
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/**
|
||
* @}
|
||
*/
|
||
|
||
/**
|
||
* @}
|
||
*/
|
||
|
||
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|