2019-10-18 16:39:08 +01:00

380 lines
12 KiB
C
Raw Blame History

/**
******************************************************************************
* @file I2C/I2C_EEPROM/Src/main.c
* @author MCD Application Team
* @brief This sample code shows how to use STM32F3xx I2C HAL API to transmit
* and receive a data buffer with a communication process based on
* DMA transfer.
* The communication is done using an EEPROM M24M01-HR
* on STM32373C-EVAL RevB Eval board.
* ===================================================================
* Notes:
* - This example is intended for STM32F373xC families devices only.
* - The I2C EEPROM memory (M24M01-HR) is compatible
* with the I2C Fast Mode Plus.
* Jumper JP4 and JP5 needs to be set in I2C2_F position.
* Jumper JP14 (E2P WC) needs to be set.
* ===================================================================
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F3xx_HAL_Examples
* @{
*/
/** @addtogroup I2C_EEPROM
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define EEPROM_ADDRESS 0xA4 /* EEPROM M24M01-HR Address */
#define EEPROM_PAGESIZE 128 /* EEPROM M24M01-HR used */
#define EEPROM_LONG_TIMEOUT 1000 /* Long Timeout 1s */
#define EEPROM_MAX_TRIALS 300
/* When using M24M01-HR set TIMING to 0x00C4092A to reach 1 MHz speed */
/* (Rise time = 26ns, Fall time = 2ns) */
#define EEPROM_TIMING 0x00C4092A
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* I2C handler declaration */
I2C_HandleTypeDef I2cHandle;
/* Buffer used for transmission */
uint8_t aTxBuffer[] = "/* I2C HAL API EEPROM driver example: \
This firmware provides a basic example of how to use the I2C HAL API based on DMA and\
an associate I2C EEPROM driver to communicate with M24M01-HR EEPROM \
I2C peripheral is configured in Master transmitter during write operation and in\
Master receiver during read operation from I2C EEPROM.*/";
/* Buffer used for reception */
uint8_t aRxBuffer[RXBUFFERSIZE];
/* Useful variables during communication */
uint16_t Memory_Address;
int Remaining_Bytes;
uint32_t Timeout = EEPROM_LONG_TIMEOUT;
uint16_t NumOfData;
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static uint16_t Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength);
static void Error_Handler(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
uint32_t Memory_Write_Trials = 0;
uint32_t Memory_Read_Trials = 0;
/* STM32F3xx HAL library initialization:
- Configure the Flash prefetch
- Systick timer is configured by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
- Set NVIC Group Priority to 4
- Low Level Initialization
*/
HAL_Init();
/* Configure the system clock to 72 MHz */
SystemClock_Config();
/* Configure LED1, LED2 and LED3 */
BSP_LED_Init(LED1);
BSP_LED_Init(LED2);
BSP_LED_Init(LED3);
/*##-1- Configure the I2C peripheral ######################################*/
I2cHandle.Instance = I2Cx;
I2cHandle.Init.Timing = EEPROM_TIMING;
I2cHandle.Init.OwnAddress1 = 0x00;
I2cHandle.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
I2cHandle.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
I2cHandle.Init.OwnAddress2 = 0x00;
I2cHandle.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
I2cHandle.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if(HAL_I2C_Init(&I2cHandle) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/* Enable the Analog I2C Filter */
HAL_I2CEx_ConfigAnalogFilter(&I2cHandle,I2C_ANALOGFILTER_ENABLE);
/* The board sends the message to EEPROM then reads it back */
/*##-2- Start writing process ##############################################*/
/* Initialize Remaining Bytes Value to TX Buffer Size */
Remaining_Bytes = TXBUFFERSIZE;
/* Initialize Memory address to 0 since EEPROM write will start from address 0 */
Memory_Address = 0;
/* Since page size is 128 bytes, the write procedure will be done in a loop */
while(Remaining_Bytes > 0)
{
do
{
/* Write EEPROM_PAGESIZE */
if (HAL_I2C_Mem_Write_DMA(&I2cHandle , (uint16_t)EEPROM_ADDRESS, Memory_Address, I2C_MEMADD_SIZE_16BIT, (uint8_t*)(aTxBuffer + Memory_Address), EEPROM_PAGESIZE)!= HAL_OK)
{
if (HAL_I2C_GetError(&I2cHandle) != HAL_I2C_ERROR_AF)
{
/* Writing process Error */
Error_Handler();
}
}
/* Increment Trials */
Memory_Write_Trials++;
}
while((Memory_Write_Trials < EEPROM_MAX_TRIALS) && (HAL_I2C_GetError(&I2cHandle) == HAL_I2C_ERROR_AF));
/* Clear Trials */
Memory_Write_Trials = 0;
/* Wait for the end of the transfer */
/* Before starting a new communication transfer, you need to check the current
state of the peripheral; if it<69>s busy you need to wait for the end of current
transfer before starting a new one.
For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
{
}
/* Check if the EEPROM is ready for a new operation */
while (HAL_I2C_IsDeviceReady(&I2cHandle, EEPROM_ADDRESS, 10, 300) == HAL_TIMEOUT);
/* Wait for the end of the transfer */
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
{
}
/* Update Remaining bytes and Memory Address values */
Remaining_Bytes -= EEPROM_PAGESIZE;
Memory_Address += EEPROM_PAGESIZE;
}
/*##-3- Start reading process ##############################################*/
do
{
if(HAL_I2C_Mem_Read_DMA(&I2cHandle , (uint16_t)EEPROM_ADDRESS, 0, I2C_MEMADD_SIZE_16BIT, (uint8_t*)aRxBuffer, RXBUFFERSIZE)!= HAL_OK)
{
if (HAL_I2C_GetError(&I2cHandle) != HAL_I2C_ERROR_AF)
{
/* Reading process Error */
Error_Handler();
}
}
/* Increment Trials */
Memory_Read_Trials++;
}
while((Memory_Read_Trials < EEPROM_MAX_TRIALS) && (HAL_I2C_GetError(&I2cHandle) == HAL_I2C_ERROR_AF));
/* Clear Trials */
Memory_Read_Trials = 0;
/* Wait for the end of the transfer */
while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
{
}
/*##-4- Compare the sent and received buffers ##############################*/
if(Buffercmp((uint8_t*)aTxBuffer, (uint8_t*)aRxBuffer, RXBUFFERSIZE))
{
/* Processing Error */
Error_Handler();
}
/* Infinite loop */
while (1)
{
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 72000000
* HCLK(Hz) = 72000000
* AHB Prescaler = 1
* APB1 Prescaler = 2
* APB2 Prescaler = 1
* HSE Frequency(Hz) = 8000000
* HSE PREDIV = 1
* PLLMUL = RCC_PLL_MUL9 (9)
* Flash Latency(WS) = 2
* @param None
* @retval None
*/
void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct)!= HAL_OK)
{
/* Initialization Error */
while(1);
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2)!= HAL_OK)
{
/* Initialization Error */
while(1);
}
}
/**
* @brief Tx Transfer completed callback.
* @param I2cHandle: I2C handle
* @note This example shows a simple way to report end of DMA Tx transfer, and
* you can add your own implementation.
* @retval None
*/
void HAL_I2C_MemTxCpltCallback(I2C_HandleTypeDef *I2cHandle)
{
/* Turn LED1 on: Transfer in transmission process is correct */
BSP_LED_On(LED1);
}
/**
* @brief Rx Transfer completed callback.
* @param I2cHandle: I2C handle
* @note This example shows a simple way to report end of DMA Rx transfer, and
* you can add your own implementation.
* @retval None
*/
void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *I2cHandle)
{
/* Turn LED2 on: Transfer in reception process is correct */
BSP_LED_On(LED2);
}
/**
* @brief I2C error callbacks.
* @param I2cHandle: I2C handle
* @note This example shows a simple way to report transfer error, and you can
* add your own implementation.
* @retval None
*/
void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *I2cHandle)
{
/** 1- When Slave don't acknowledge it's address, Master restarts communication.
* 2- When Master don't acknowledge the last data transferred, Slave don't care in this example.
*/
if (HAL_I2C_GetError(I2cHandle) != HAL_I2C_ERROR_AF)
{
/* Turn LED3 on: Transfer error in reception/transmission process */
BSP_LED_On(LED3);
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* Turn LED3 on */
BSP_LED_On(LED3);
while(1)
{
}
}
/**
* @brief Compares two buffers.
* @param pBuffer1, pBuffer2: buffers to be compared.
* @param BufferLength: buffer's length
* @retval 0 : pBuffer1 identical to pBuffer2
* >0 : pBuffer1 differs from pBuffer2
*/
static uint16_t Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength)
{
while (BufferLength--)
{
if ((*pBuffer1) != *pBuffer2)
{
return BufferLength;
}
pBuffer1++;
pBuffer2++;
}
return 0;
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/